CHALLENGES IN BRINGING LARGE LANGUAGE MODELS TO THE MARKET

Teratec 2022 — IA & HPC dans l'Industrie

Julien Launay

Extreme-Scale Project Lead | LightOn {firstname}@lighton.ai

Large Language Models (LLMs) are eating machine learning

LLMs provide a universal text-based interface to tackle any tasks:

Key aspects of LLMs:

- They are generalists, able to tackle broad tasks just from instructions.
- Their capabilities increase as you scale-up in size/compute.
- One of the main business & research interest in machine learning. from Google, DeepMind, Microsoft, etc. + large start-ups such as OpenAl and Cohere.
- Just the beginning: proper prompting + addition of other modalities.

Today is not about what/why, but about how, from experience with:

176B multilingual model

muse.lighton.ai

Chonk' me up Scotty

For the next generation of LLMs, we will need to <u>scale</u>...

varied applications

quality at scale

engineering challenges

accelerate scaling

As many use cases as they are users...

You can use LLMs for <u>countless</u> downstream applications...

From straightforward text completion...

writing assistant

...or text classification...

language assessments

...to web development... Iteration X

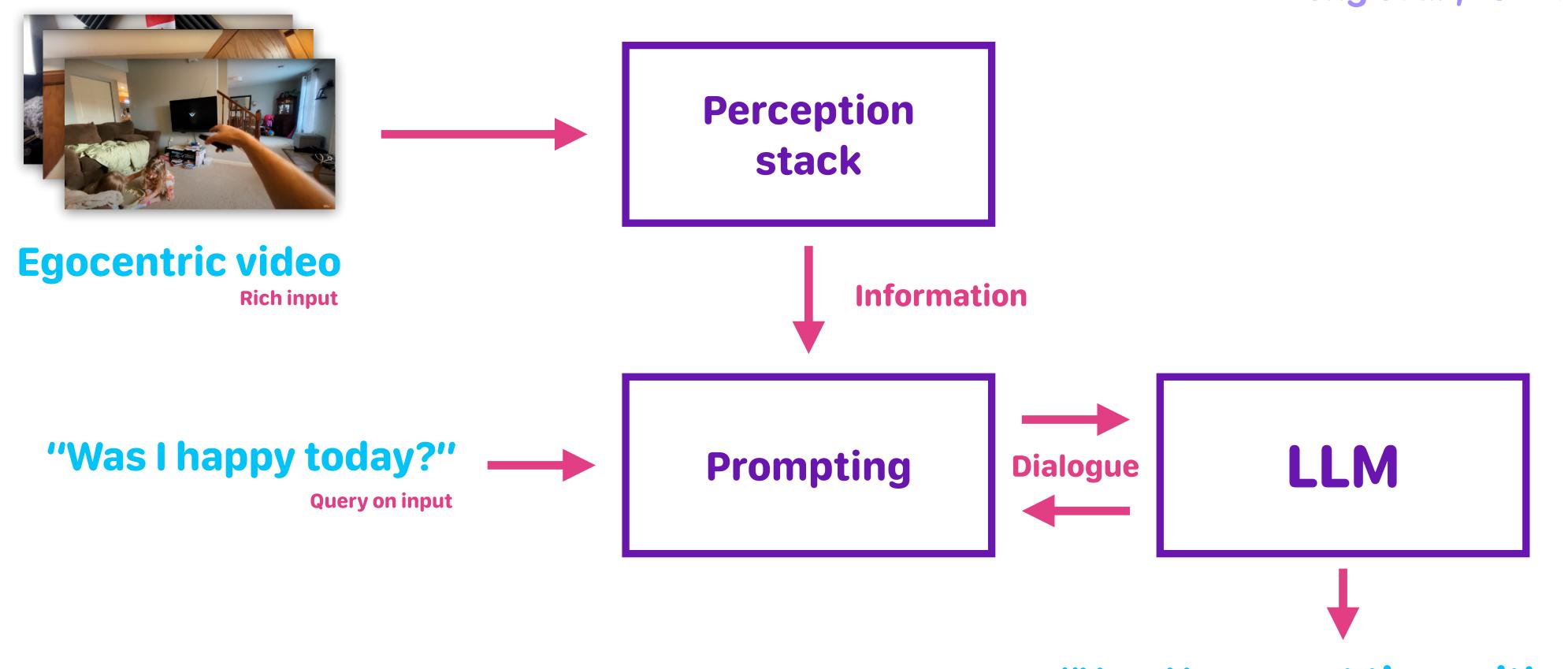
code changes from issues

and more!

Unexpected use of LLMs: socratic models

From an egocentric video, understand what happened during the day.

Zeng et al.,2022.



"Yes. You spent time with your kids watching a show you like."

Answer

Unexpected use of LLMs: socratic models

How do we prepare for all these use cases when building an LLM?

XNLP datasets don't capture all these tasks well... "real-world datasets" (e.g. RAFT)

Variety in task types & best architectures...

aggregated benchmarks (e.g. EAI, Tk-Few)

Alignment with human intentions

specialised models (e.g. instructGPT)

Specialisation of the model?

zero/few-shot use
finetuning
parameter efficient finetuning
multitask finetuning
different tradeoffs/practices

Model quality is all about data quality

Training data matters <u>a lot!</u>

(more than most modeling choices?)

Aggregated performance on EAI harness

Model	Parameters	Pretraining tokens			
		Dataset	112B	250B	300B
OpenAI — Curie	6.7B				49.28
OpenAI — Babbage	1.3B				45.30
EleutherAI — GPT-Neo	1.3B	The Pile			42.94
	13B	OSCAR			47.09
O	1.3B	The Pile	42.79	43.12	43.46
	1.3B 1.3B	C4 OSCAR	42.77 41.72		

Le Scao et al.,2022.

Same architecture, different data:

45.30% 43.46%

OpenAl-Babbage(1.3B)

Ours-1.3B@The Pile

Model quality is all about data quality

Training data matters <u>a lot!</u>

(more than most modeling choices?)

Aggregated performance on EAI harness

Model	Parameters	Pretraining tokens			}
		Dataset	112B	250B	300B
OpenAI — Curie	6.7B				49.28
OpenAI — Babbage	1.3B				45.30
EleutherAI — GPT-Neo	1.3B	The Pile			42.94
	13B	OSCAR			47.09
Ours	1.3B 1.3B 1.3B	The Pile C4 OSCAR	42.79 42.77 41.72	43.12	43.46

Le Scao et al.,2022.

Scale can't compensate for bad data:

49.28% 47.09%

OpenAl-Curie(6.7B)

Ours-13B@OSCAR

We are gonna need a bigger dataset!

Bad news: we need a lot more data than expected...

Previously... Kaplan et al., 2020

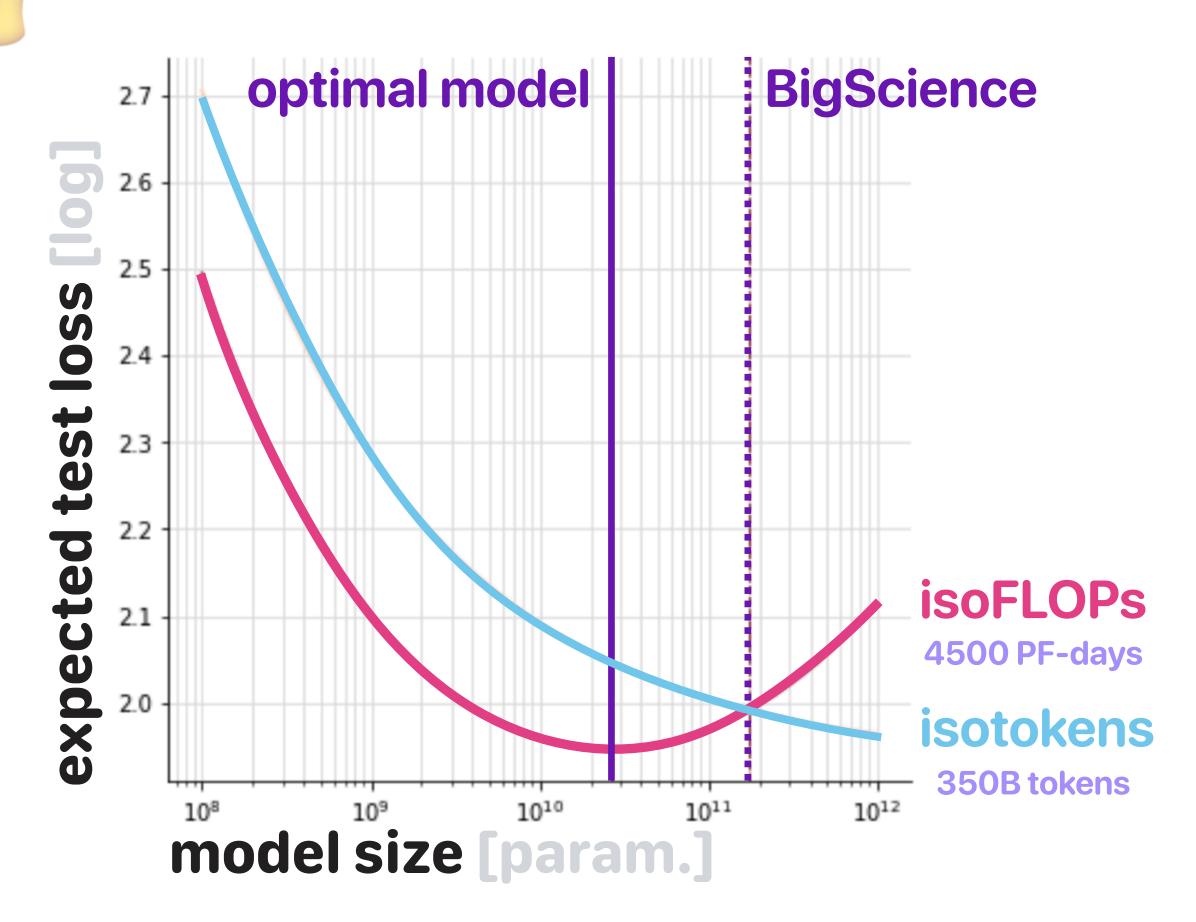
176B parameters → 300B tokens

Now... Hoffmann et al., 2020

isoFLOPs 50B parameters → 1000B tokens

isoparams 176B parameters → 3700B tokens

~1 year of CC English



Will we be data-bound instead of compute-bound?

Fantastic training data and where to find it

What even is high-quality data?

curation

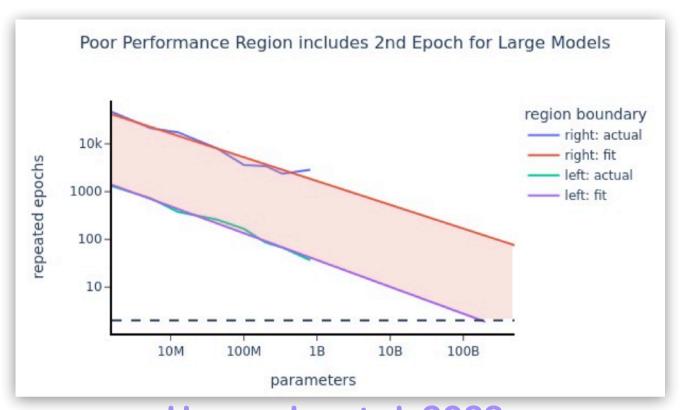
technical filtering deduplication, lack of artefacts, etc. diverse, cross-domain, etc.

"social media conversations"

Total dataset size $= 780$ billion tokens				
Data source	Proportion of data			
Social media conversations (multilingual)	50%			
Filtered webpages (multilingual)	27%			
Books (English)	13%			
GitHub (code)	5%			
Wikipedia (multilingual)	4%			
News (English)	1%			

Chowdhery et al., 2022.

double descent for duplication?



Hernandez et al., 2022.

- Currently, dataset construction is more akin to magic... Need principled methods!
- **!** Emergence of data moats which could stand in the way of research.

Fantastic training data and where to find it

We need this in >100 languages!

Required minimum data

Data available in one year of CommonCrawl

Medium quality

tokens

6T

880B

145B

16B

	Model size	Minimum tokens	Ranking	Language	High quality tokens	
	1.5B	20B	1st	English	2 T	
	6.7B 20B	134B 400B	7th	French	260B	
r	200	4006	15th	Indonesian	50B	
	100B	2,000B				
	500B	10,000B	30th	Hindi	8B	

Iterating at 88 batches an hour

Training time on an NVIDIA SuperPod (160 A100):

Model size	Good for	Tokens	A100h required	Training time
1.5B	Simple classification, basic generation	200B	4300	~1 day
6.7B	Most generation & classification use cases	200B	22000	<1 week
20B	Zero/few-shot complex tasks	400B	134000	<1 month

We are doing Big Science, and this comes with challenges...

LLMs are a true big science and require significant engineering efforts...

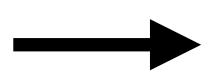
state-of-the-art HPC challenges

Principled approaches are very much needed: tested and validated frameworks

BLOOM: >100 configurations tested!

tested and validated frameworks
expert HPC/software engineering knowledge
performance tuning is magic currently

e.g. tile/wave quantization, distributed hyperparameters, etc.



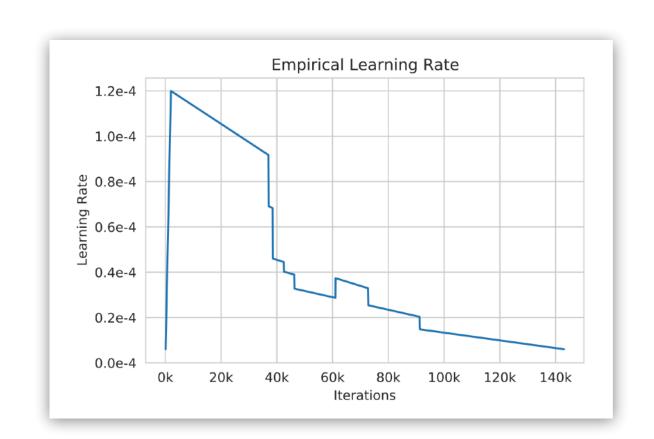
(let's avoid this)

Case-study of how hard it can get: Meta's OPT

OPT: Open Pre-Trained Transformer Language Models

Zhang et al., 2022

Meta's open "reproduction" of GPT-3 was... a challenging experience!



manually tuned learning rate

hundreds of restarts, spikes, etc.

But why?

FP16

BF16

template: Karpathy, 2020

He who controls the chips controls the LLMs

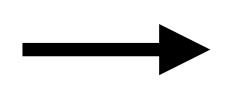
Hardware progress is secretly shaping machine learning

The Hardware Lottery

Sara Hooker, 2020

data/model/pipeline/sequence parallelism diversity in HPC platforms

network topology, etc.



it's not enough to have the GPUs, you need the platform around it!

Can better modeling & more efficient pretraining change the playing field?

We can gain in efficiency...

current approaches, ~50% GPU FLOPs usage

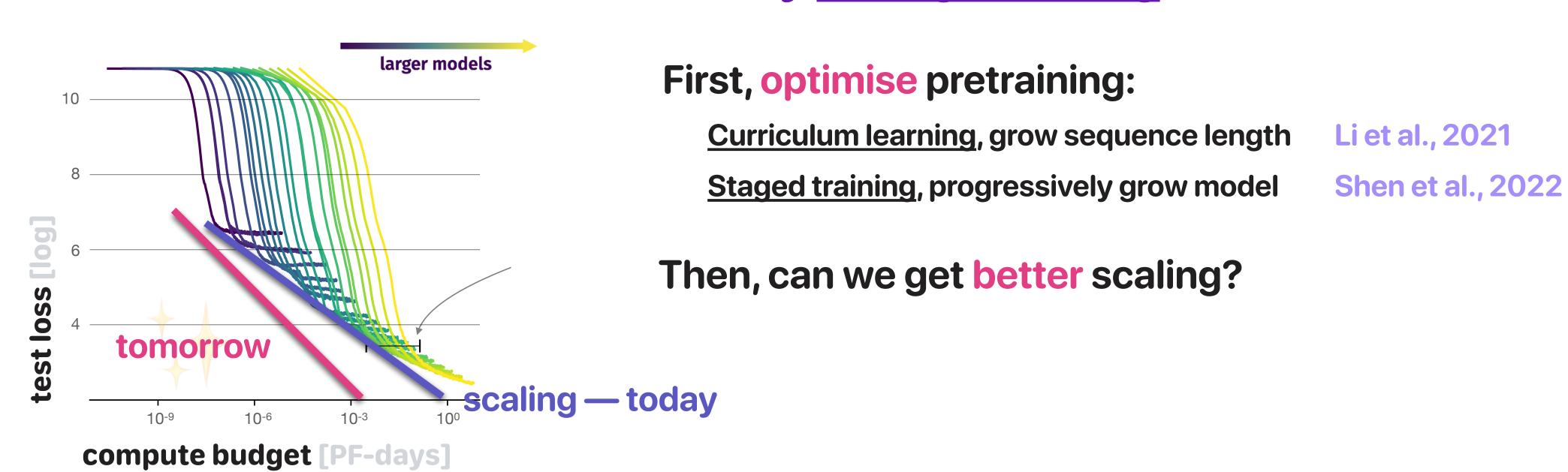
reduced numerical precision: down to int8

see Transformer engine in H100

reduce number of computations

efficient attention, etc.

But can we also fundamentally change scaling behaviour?



Significant compute resources will remain key!