

Impact of Data management on Architecture Design

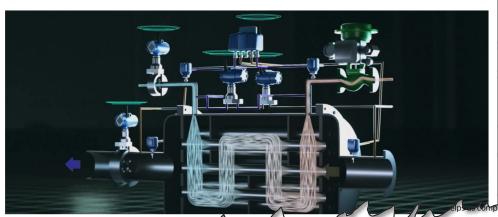
Oil Industry in Azure

Raouf Aimeur – Cloud Architect

How Al is building better gas station transforming Shell's global energy b

Imagine a man lighting a cigarette while he's waiting at the pump for his car to finish fueling at a Shell gas unaware that with one move he could cause a fire or explosion.

An onsite video camera captures the scene, and a device inside the station running Microsoft Azure IoT Ec


Chevron's connected machines are telling a story about saving time and money

Deep within a Chevron fuel refinery, one key machine is now talking – and revealing secrets about its own health.

That chatty piece of equipment, called a heat exchanger, removes the heat from fluids flowing through it as part of the plant's fuel processing.

In a pilot program, Chevron affixed some exchangers with wireless, Industrial Internet of Things (IIoT) sensors that collect and send real-time data from the heat exchanger to the cloud – supplementing information already gathered by the safety and control system.

Data scientists then analyze that fresh data to check the equipment's health status now, and to predict its condition in the

coming and going, drivers cleaning winds the "intelligent edge," where Repsol signs agreement with chine learning algorithms ca lents: people driving reckles Microsoft to develop digitisation

technology

press re

strategy

f y in 📭 🤊

By Elizabeth Robinson on 20 December 2017

Chevron Partners to Fuel Digital 7 m the Reservoir

lication of Technology Will

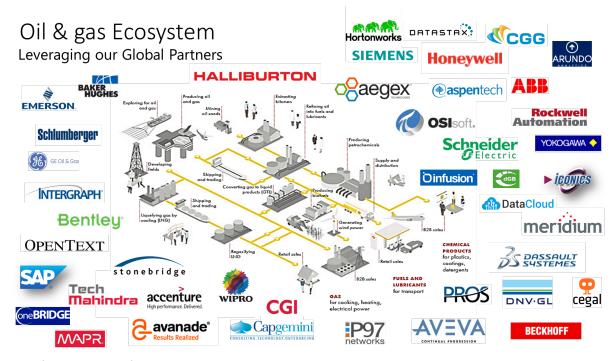
Calif., Oct. 30, 2017 - Chevron Corporation Corp. establishing the company as Chevron' nologies including analytics and the Internet

already have a head start in digitizing our oilfields, but we that position as to increase our revenues, lower our costs, a BP is using Microsoft Azure to reduce time oil drilling and boost productivity

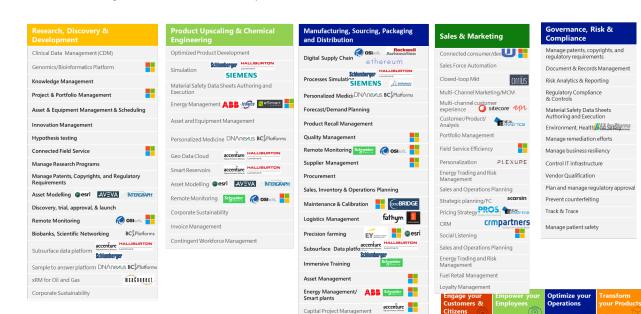
By Elly Yates-Roberts on 19 December 2018

Topics News, Professional services,

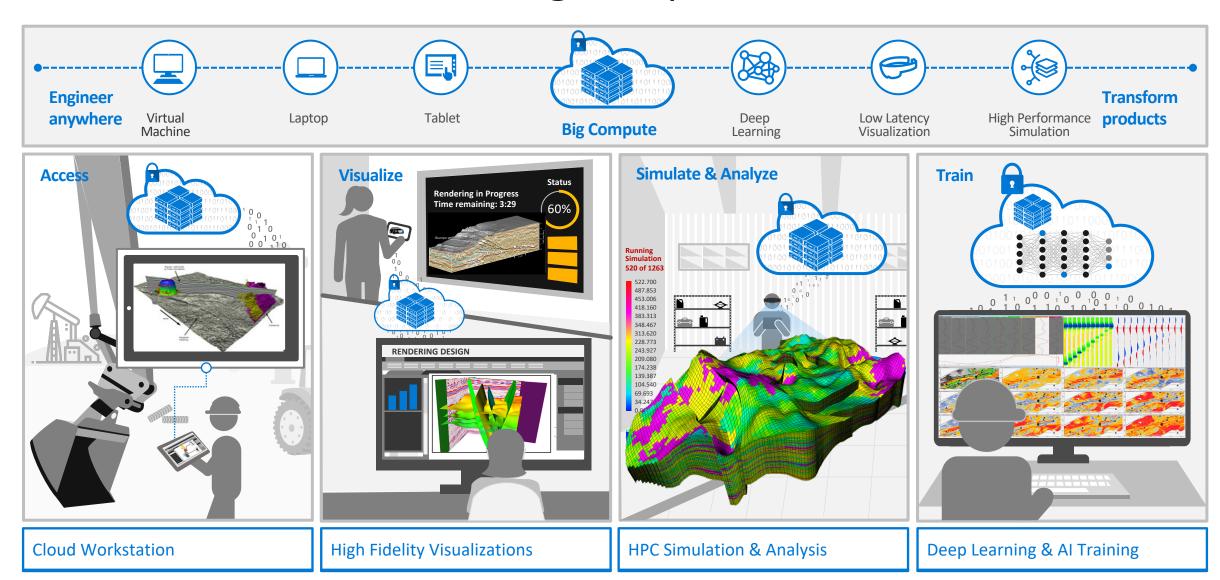
Office, Cloud, IoT, Al


Global energy firm Repsol has signed an agreement with Microsoft that will help advance its digitisation strategy through the adoption of cloud

ne needed to select its data scientists to Microsoft's Bill 'drilling down into its



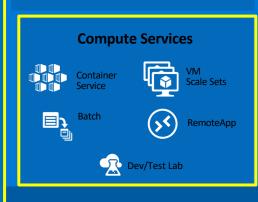
Azure Big Compute ecosystem



Industry Solution Map – Process Manufacturing & Resources

Accelerate innovation with Big Compute from Microsoft

Key Vault


Store/ Marketplace

VM Image Gallery & VM Depot

Virtual Machines

Compute

Containers

Media & CDN

Media Media Content
Analytics Content
Delivery
Network

Integration

Service Bus

Storage

Files $\begin{bmatrix} 10\\01 \end{bmatrix}$ Disks

API Management

DNS DNS

Data

DocumentDB

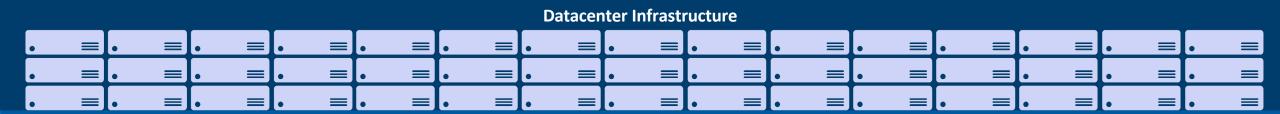
SQL Data Warehouse

Redis Cache

Intelligence

Networking

Express Route

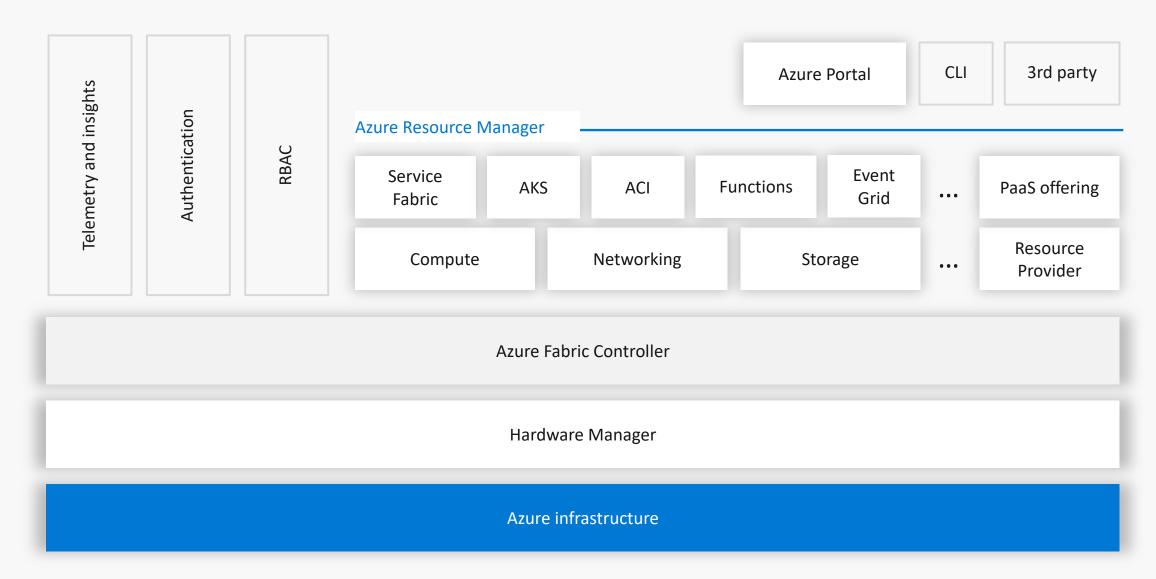


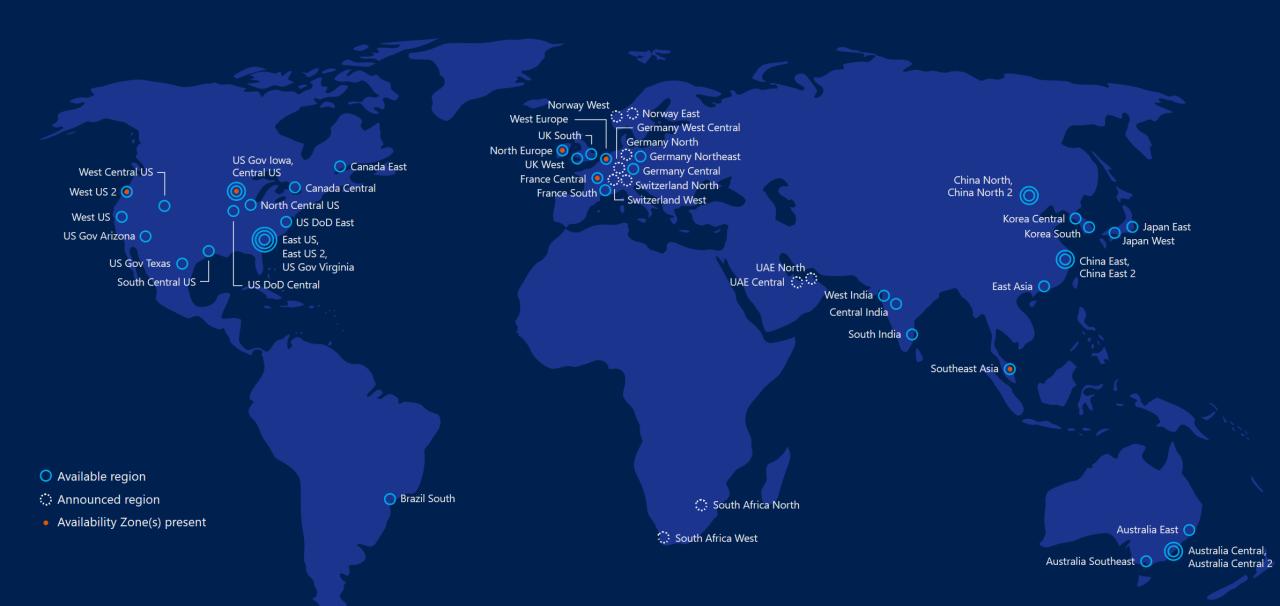
App

Gateway

Infrastructure Services

⟨···⟩ Virtual Network




Evolving services to Hyper-scale

Delivering hyper-scale services requires a radical restructuring of technology, processes, and people

	Enterprise IT	Hyper-Scale		Enterprise IT	Hyper-Scale
Seats Talent Data Quality Data Access Assessment Supply Chain Budget Architecture Application integration Infrastructure Reach	10,000 Custodians Directional Pull Physical Process Fixed Cost Siloed Loose Overhead Regional	1,000,000,000 Designers Foundational Push Statistical Strategic Rates Integrated Tight Enabler Global	Hardware Deployment Availability Operability Reliability Security Network downtime Network availability Design Deployment time System admin	Custom Manual Infrastructure MTBF Hardware Audit Impacting 99.999% Primary/Backup Weeks UI	Commodity Automated Service MTTR Software Intrinsic Irrelevant 99.9% Active/Active Minutes API

Azure architecture

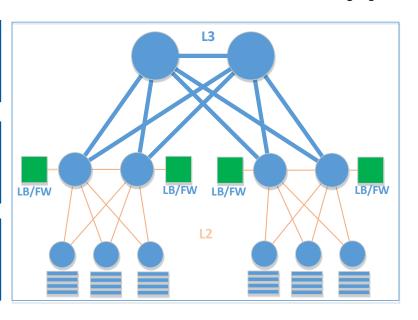
2M Miles / **3.2M Km** intra-datacenter fiber

72+Tb per second backbone

150+ datacenters

Millions of servers

Datacenter evolution: from 1989 to today


2.0+ Power Usage 1.4 - 1.6 PUE 1.2 - 1.5 PUE 1.12 - 1.20 PUE **Effectiveness (PUE)** 1.07 - 1.19 PUE **TBA** 2012 2016+ 1989-2005 2007 2009 2015 Colocation Density Containment Modular Hyper-scale Watch this space! Rack Containers, PODs **Fully integrated** Discrete servers Deployment Areas & Direct current power **ITPACs** Density & deployment Scalability & Resilient software Capacity Alternative energy sustainability No more traditional IT Common infrastructure 20 year technology Minimized resource Underwater facilities Air & water Right-sized impact Operational simplicity Software automation Economization Faster time-to-market Flexible & scalable Security innovation Differentiated SLAs Outside air cooled **Generation 1 Generation 2 Generation 3 Generation 4 Generation 5 Next Gen**

Classic network vs. Hyper-scale architecture

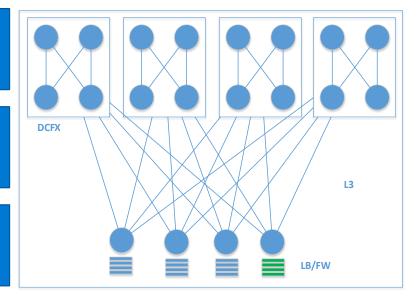
Large L2 Domains

HW-based service modules

Simple Tree Design

Low due to diversity and manual provisioning process

Low due to complex hardware and lack of automated operations


Low due to high complexity and human error

L3 at all layers

Services in software

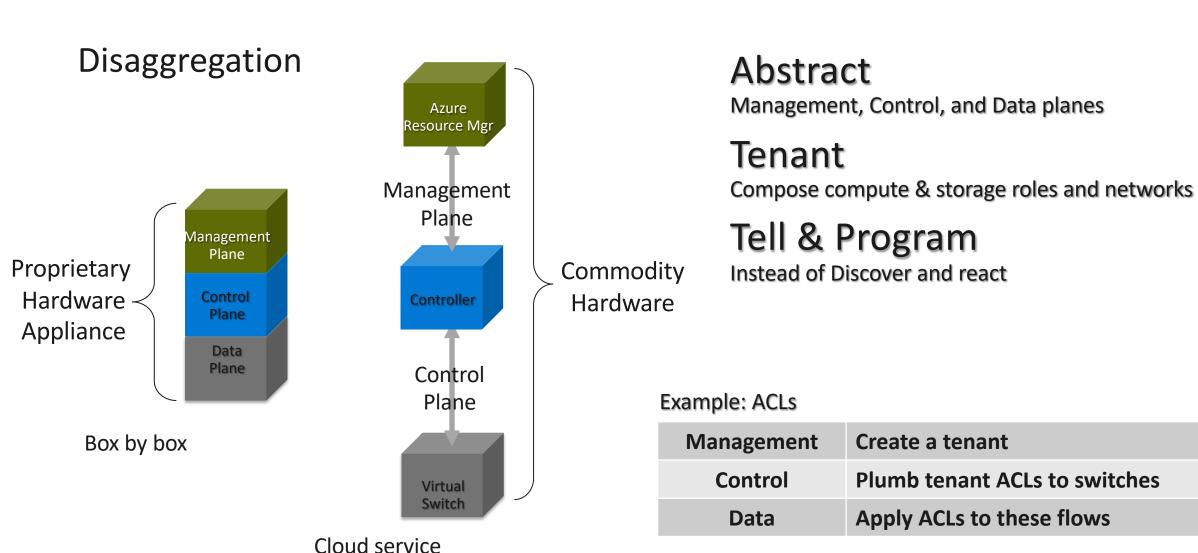
Clos-based design

Agility

Automated network provisioning, integrated process

Efficiency

Simplify requirements, optimize design, and unify infrastructure


Availability

Resilient design, automated monitoring and remediation, minimum human involvement

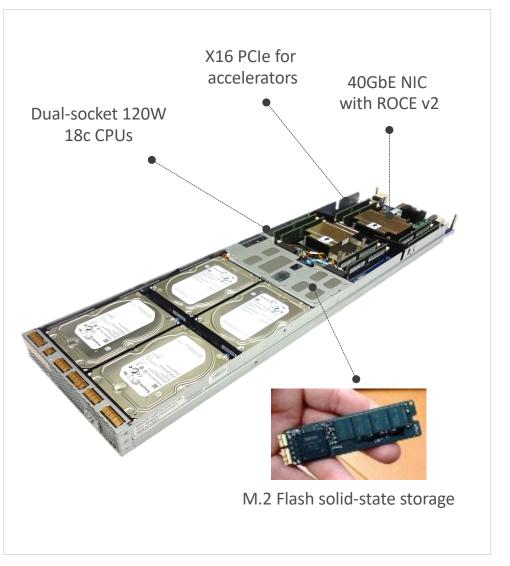
Virtual Networks delivered via SDN

Building the right abstractions to enable Scale and Agility

Microsoft Open Cloud Server – Jan 2014

> One Million Servers

- \$15 billion infrastructure investment over 20 years
- Global infrastructure enables 200+ cloud services
- Close collaboration with hardware partners


Open Compute Project

- Contributed Microsoft Cloud Server Specification
- Hardware Supports Azure, M365 and Bing
- Innovation in modularity, simplicity and efficiency

Driving Customer Benefit

- Deliver hyper-scale learnings
- Drive innovation in the hardware ecosystem
- Microsoft innovations in the hands of customers

Azure servers: General purpose

Gen 2 Processor 2 x 6 Core 2.1 GHz Memory 32 GiB Hard Drive 6 x 500 GB SSD None NIC 1 Gb/s

Gouzilla		
Processor	2 x 16 Core 2.0 GHz	
Memory	512 GiB	
Hard Drive	None	
SSD	9 x 800 GB	
NIC	40 Gb/s	

Processor 2 x Skylake 24 Core 2.7GHz Memory 768GiB DDR4 Hard Drive None SSD 4 x 960 GB M.2 SSDs and 1 x 960 GB SATA NIC 40 Gb/s + FPGA		
Hard Drive None SSD 4 x 960 GB M.2 SSDs and 1 x 960 GB SATA	Processor	
SSD 4 x 960 GB M.2 SSDs and 1 x 960 GB SATA	Memory	768GiB DDR4
SSD 1 x 960 GB SATA	Hard Drive	None
NIC 40 Gb/s + FPGA	SSD	
	NIC	40 Gb/s + FPGA

Орин	optimized demo		
Processor	2 x 24 core Skylake Lake		
Memory	192 GB DDR4		
Hard Drive	None		
SSD	4 x 960 GB M.2 NVMe		
NIC	40 Gb/s + FPGA		

 Optimized Gen 7

 Processor
 2 x 26 core Cascade Lake

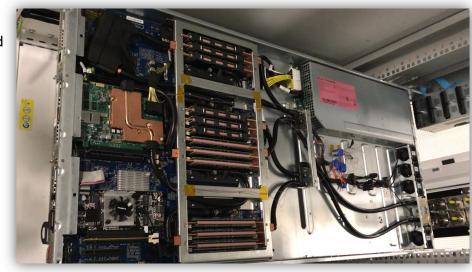
 Memory
 192 GB DDR4

 Hard Drive
 None

 SSD
 5 x 960 GB M.2 NVMe

 NIC
 50 Gb/s + FPGA

Deast		
Processor	4 x 18 Core 2.5 GHz	
Memory	4096 GiB	
Hard Drive	None	
SSD	4 x 2 TB NVMe, 1 x 960 GB SATA	
NIC	40 Gb/s	

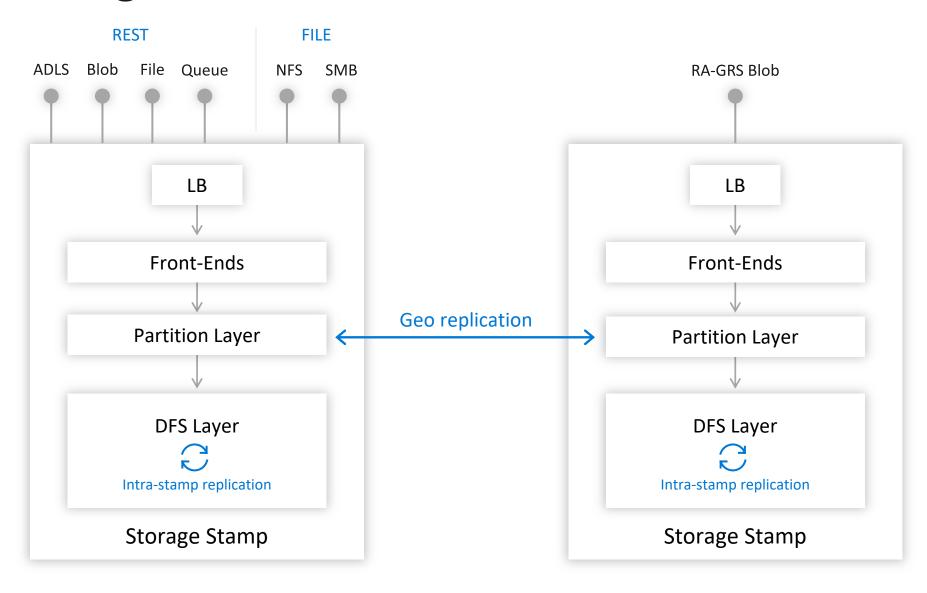

Beast v2		
Processor	8 x 28 Core 2.5 GHz	
Memory	12 TiB	
Hard Drive	None	
SSD	4 x 2 TB NVMe, 1 x 960 GB SATA	
NIC	50 Gb/s	

Azure Spriere		
Processor	2 x M4 Core @ 200 MHz	
Memory	64KB RAM	
WiFi	2.4/5.0 GHz 802.11 b/g/n	

Liquid Cooling : Olympus

Microchannel Cold Plates

One phase immersion


Air Cooled Olympus

Two phase immersion

Azure Storage architecture

Big Compute Offerings

Azure Stack

 Azure Stack brings the agility and innovation of cloud computing to on-premises environments. Organizations can now build modern applications across hybrid cloud environments with the right flexibility and control.

Specialized Compute

Microsoft Azure

offers a wide range of specialized compute infrastructure that allows Oil & Gas companies to break free from the overhead and limitations of their onpremises infrastructure and tap into unlimited resources to scale their highperformance computing (HPC) jobs—analyzing large-scale data, running simulations and experiments while reducing

time to market

Azure Batch

• Azure Batch is a platform service for running largescale parallel and highperformance computing (HPC) applications efficiently in the cloud. Azure Batch schedules computeintensive work to run on a managed collection of virtual machines, and can automatically scale compute resources to meet the needs of your jobs.

Cycle Cloud

 CvcleCloud software suite is the leading cloud orchestration. provisioning, and data management platform for Big Compute, Big Data, and large technical computing applications running on any public, private, or internal environment

Avere File System

 Avere uses an innovative combination of file system and caching technologies to support the performance requirements for customers HPC workloads. By bringing together Avere's storage expertise with the power of Microsoft's cloud, customers will benefit from industry-leading innovations that enable the largest, most complex highperformance workloads to run in Microsoft Azure

Open Source

 Azure continues to aggressively embrace open source technology on Azure. One in four Azure virtual machines runs **Linux** now. This is especially important in HPC workloads since a lot of solutions, applications and workloads require open source industry and research developed libraries for the different applied mathematics employed in HPC.

Strategic Partnerships

- One of the key differentiator in Oil & Gas and Azure is Microsoft long standing key strategic partnerships in the O&G ecosystem. The company continues to build significant relationships with some of the most highly visible Oil & Gas companies and ISV's in the world.
- Our Cray
 partnership is
 also key for big
 Oil & Gas
 customers.

