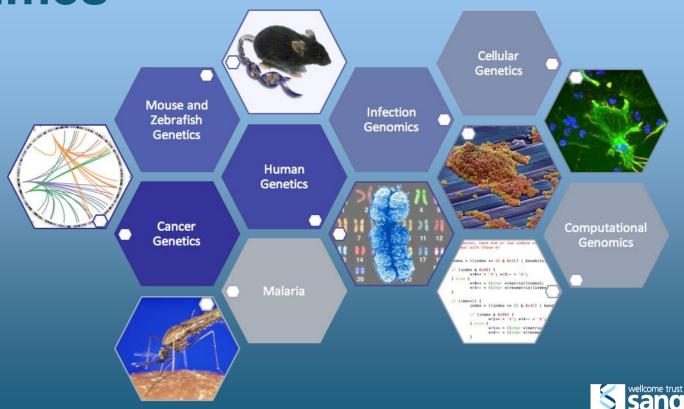


Flexible HPC for Bio-informatics

Peter Clapham

Overview

Overview of the Sanger Institute

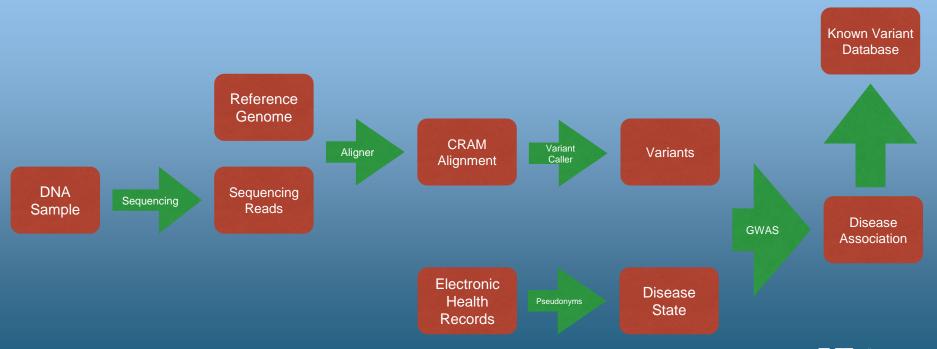

How our data flow works today

- New scientific demands
- Private cloud deployment

• Transitional and future challenges

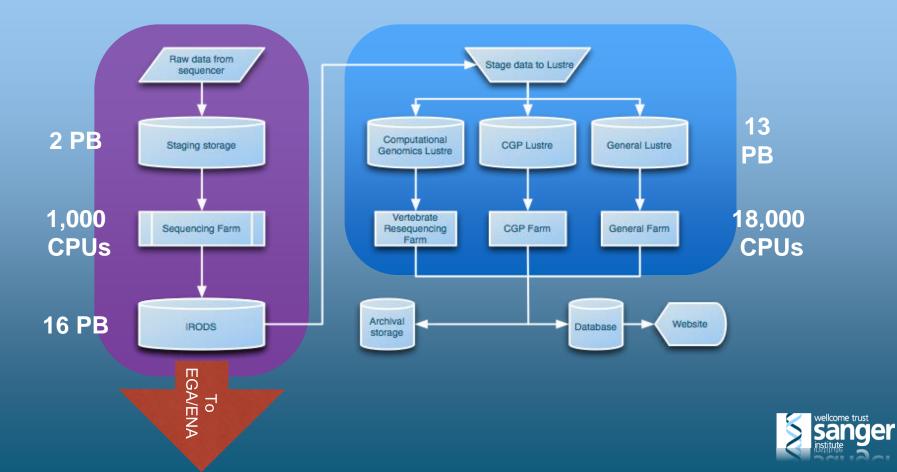
Scientific Programmes

Core Facilities



Sequencing Yields

Human Genome, 30-40x Coverage, 120GBases


	Mini Seq System	MiSeq Series	NextSeq Series	HiSeq Series	HiSeq X Series'
Key Methods	Amplicon, targeted RNA, small RNA, and targeted gene panel sequencing.	Small genome, amplicon, and targeted gene panel sequencing.	Everyday exome, transcriptome, and targeted resequencing.	Production-scale genome, exome, transcriptome sequencing, and more.	Population- and production-scale whole- genome sequencing.
Maximum Output	7.5 Gb	15 Gb	120 Gb	1500 Gb	1800 Gb
Maximum Reads per Run	25 million	25 million [†]	400 million	5 billion	6 billion
Maximum Read Length	2 × 150 bp	2 × 300 bp	2 × 150 bp	2 × 150 bp	2 × 150 bp
Run Time	4–24 hours	4–55 hours	12–30 hours	<1–3.5 days (HiSeq 3000/HiSeq 4000) 7 hours–6 days (HiSeq 2500)	<3 days
Benchtop Sequencer	Yes	Yes	Yes	No	No

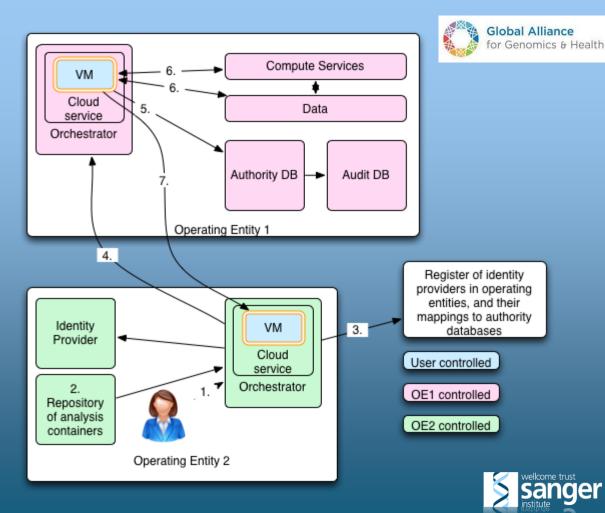
Genome-wide association studies

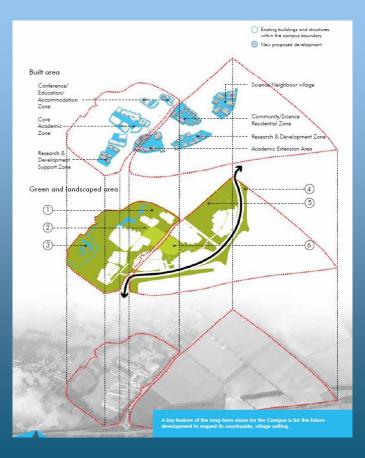
Sanger NGS Data Flow: IT View

Increasing Collaboration

Academic collaborations

- Ensembl (EMBL-EBI)
- Pan-cancer (OICR, Broad, DKFZ etc)
- Global Alliance for Genomics & Health
- eMedLab (Crick, UCL, EMBL-EBI et al)
- FARR Institute
- Industrial collaborations
 - OpenTargets (GSK, EMBL-EBI, Biogen, Sanger)
 - AstraZeneca
- Spin-out companies
- Congenica
- Mouse Colony Management System
- ... up to 30 others
- Clinical resources
 - DECIPHER
 - COSMIC
 - Pathogen Surveillance





GA4GH

Federated data analysis Federated AAAI Keep data secure Open Standard data formats Open Standard APIs Freedom within the VM

Wellcome Genome Campus Vision

Our vision is to achieve extraordinary improvements in human and animal health.

Our mission is to support the brightest minds in biomedical research and the medical humanities.

Our funding focuses on: 1. Supporting outstanding researchers 2. Accelerating the application of research 3. Exploring medicine in historical and cultural contexts

- Wellcome Trust Strategic Plan 2010-2020

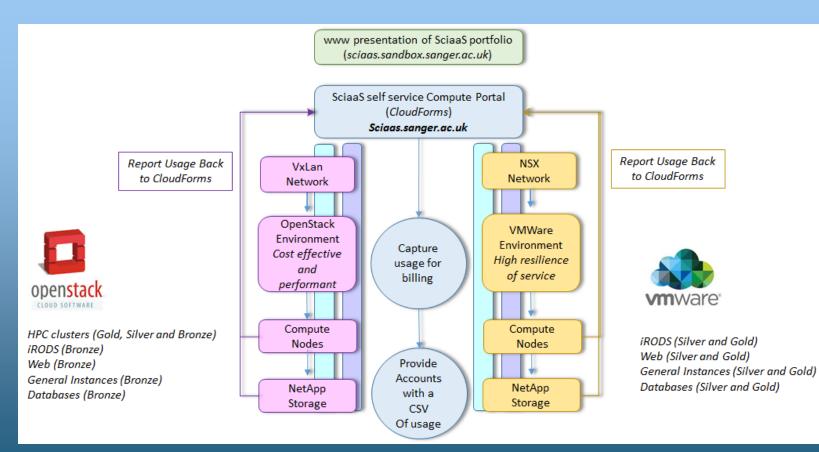
Biodata Innovation Centre

Pressures in delivery

Staff time

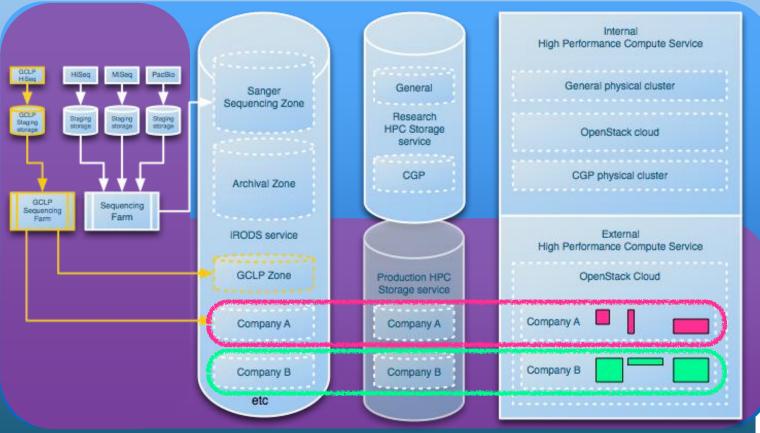

Flexibility

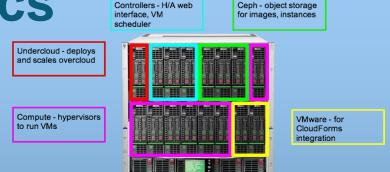
- Time to deployment
- No self-service
- Admin rights and agile development

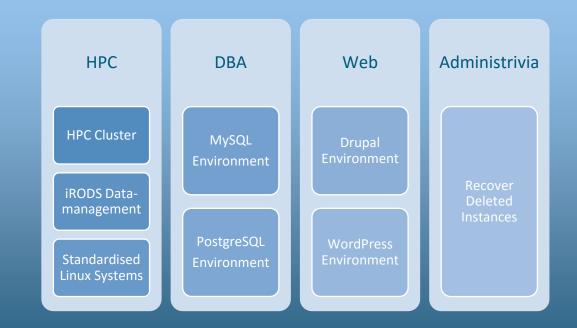

Security

Lustre

- Labour intensive
- Not multi-tenant
- Not well suited to start-up scale
- Limited monitoring of resource utilisation




Multi-tenant and clinical NGS on a common platform


Starting with the basics

- Red Hat OSP 7 (Kilo)
- Following Best Practices throughout
- Red Hat CloudForms for common orchestration of vSphere and OpenStack
- OpenIPA identity management with 2-factor authentication
- Build more complex services later

Initial Service Catalogue

Experience so far.

Training first

Service Development Pilot up and running dev/test platforms **Cluster in a box X** Licensing awkward **OpenStack lifecycle X** Legacy migration VX CloudForms **Complex:** training VMware integration tricky Not very multi-tenant (yet) Security Secure tenant networks

✓ x Documentation

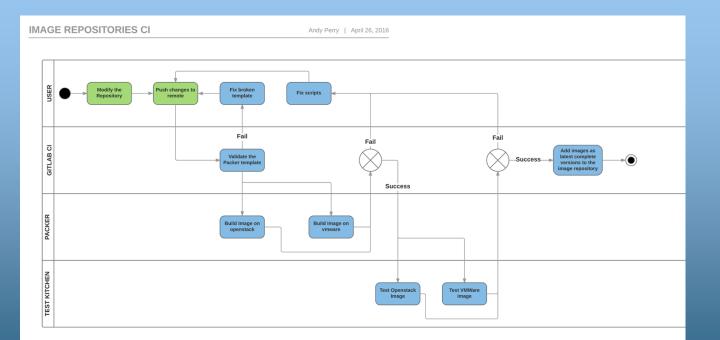
Support

Resilience Automated rebuilds

Managing user expectations

Everything as code

Pros


- Consistency of approach
- Central management
- Audit trail
- Visibility of build status and testing

Cons (or at least, things to be aware of)

- Cultural change
- Time to set up needed infrastructure and processes

Continuous Integration and Image Management

We now have

A fully codified method of creating and managing images for virtualisation platforms.

This provides:

- Providence of images provided
- Simple image management
- Ease of updates and maintenance over time
 - Particularly important for cattle over pets.
 - Reduced time for new image delivery
 - Consistency of builds and test systems as we look to develop our environment

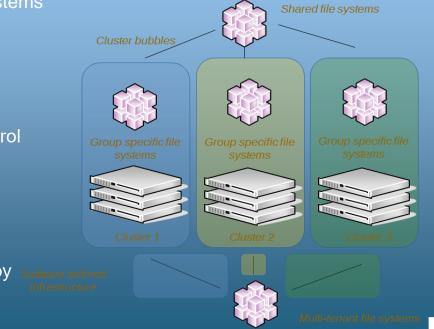
Ongoing Challenges and transition

- Transition for services will take time. POSIX won't go away overnight.
- As scale increases, failure becomes a certainty. services need to cope with component failures.
- HPC and security are strange bedfellows.
- Absolute freedom and absolute security even more so.

SDN is a key component of IaaS as we move forward, but what about storage and other supporting infrastructure components ?

Changing future toolsets

Area	Technology today	Limitations	The future
Compute	Linux clusters	Deployment weeks/months No multi-tenancy	OpenStack
Networking	Traditional, manually configured switches	Inflexible Time to delivery	Software Defined Networking: OpenStack, OpenFlow
Workload management	IBM Platform LSF	Focuses on batch work	???
Scientific pipelines	Embarrassingly parallel Single threaded	Fragility limits scale	Move to cloud-style?
Data formats	BAM → CRAM	Space hungry Analysis scaling problems	Research into better compression Graph assemblies, BWT, columnar formats
High performance storage	Lustre	No multi-tenancy Scale has to be large	???
General purpose NAS storage	Enterprise NAS	Expensive Limited multi-tenancy	Object storage? Cinder ?
Archival storage	POSIX filesystem on HP SL4540	Manageability	Object storage?
Data management	iRODS 3.3	No SSL, No atomic put	iRODS 4.1.x
Testing	Manual	Needs automation	Continuous integration
Configuration management	CFengine, git	Needs automation	Ansible, gitlab
Node deployment	Debian FAI	Deploys the OS only	OpenStack Heat/Ironic vagrant, packer



Storage, the missing magic

.Shared Object Stores .SSL secured IRODS 4.x

Providing access to secure shared filesystems Needs to become:

- Lightweight
- Transparent for end users
- Low administration cost
- ACL's via AAA and or strong OS control mechanisms
- Performant
- Cost effective
- Support POSIX (at least for now)

So fast, reliable, cheap and now secure by solution design

wellcome trust sanger