
©2010 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice1

Patrick Van Reeth – EMEA HPC Competency Center - GPU Computing Solutions

Saturday, May the 29th, 2010

designing a
GPU Computing Solution

2 Footer Goes Here

•Power

•Cooling

•Density

•Price/perf

Current Computing Challenges

Insatiable demand

for :

more Flops

and

Bigger data sets

Accelerators

supplement multi-core

with more silicon

devoted to computation

3 Footer Goes Here

What is an “HPC Accelerator”?

– Hundreds of functional units executing in parallel

– Speedup applications by 2x, 10x, 30x, or even 100x!

– Really fast

– Really cheap

– Was hard to program, but getting easier now

– Specific applications benefit

• Not useful for most applications

• Excellent for a growing number of highly parallel applications

−When it works, it can really fly!

4 Footer Goes Here

NVIDIA Tesla Industry Results

146X 36X 19X 17X 100X

Interactive
visualization of
volumetric white

matter connectivity

Ionic placement for
molecular
dynamics

simulation on GPU

Transcoding HD
video stream to

H.264

Simulation in
Matlab using

.mex file CUDA
function

Astrophysics N-
body simulation

149X 47X 20X 24X 30X

Financial
simulation of LIBOR

model with
swaptions

GLAME@lab: An
M-script API for
linear Algebra

operations on GPU

Ultrasound medical
imaging for cancer

diagnostics

Highly optimized
object oriented

molecular
dynamics

Cmatch exact
string matching to

find similar
proteins and gene

sequences

– Speedups are 20x to 150x

5 Footer Goes Here

How Accelerators can improve the
Applicative Environment ?

–Multi Nodes

–Multi CPUs

–Multi-cores

–Many cores : brings

Hundreds of functional

units executing in

parallel
Acc ?

Acc ?
Acc ?
Acc ?

Acc ?
Acc ?
Acc ?

•Speed
-up

•$$$

•m²

•Watts

6 Footer Goes Here

Hybrid Platforms

HP Accelerator program

• Floating point
(engineering
computations)

• Text or integer
• Performance per Watt

• Large codes and
operating systems

• Floating point

GPUsFPGAs

http://www.nvidia.com/page/home.html

7 Footer Goes Here

Application Speed-up key factors

The tool box is rich :

• Multi-core CPUs

• Memory bwth/Latency

• InterConnect

• Accelerators
• PCI-E speed

• SW Environments : C & Fortran
compilers, OpenCL, CUDA, HMPP,
Allinea, TotalView…

Understand the existing code :

• Track the most

computationally expensive

areas (inner loops…)

• Probe the load-balancing on

nodes & cores

• Examine the data set splits

• Probe the communications

• …

Be Agnostic first !!!

8 Footer Goes Here

Accelerator Success Factors
TRACK THE MINES !!!

• GPU rules :

• Embarrassingly parallel is good !

• Minimize memory access versus calculation. Too few calculations per
memory read/write is bad.

• use cache when possible (use memory hierarchy !)

• Thread/core mapping is very important

• Redesign the code architecture to scale to the right levels : Node(s), core(s),
GPU(s)

• Minimize CPU-GPU transfers

• Partition the data sets to stay in the onboard memory boundary

• Data set split : shift along the correct X, Y, Z axis !

• Hide communications

• Balance CPU (e.g. summations, less flops…) and GPU (e.g. convolutions,
transpositions, …) execution time appropriately.

Y

X

O

9 Footer Goes Here

Determine the right platform

• CPU / GPU execution time ratio  will
determine the type of node cores, the # GPU
per node

• PCI-E communication between CPU & GPU
will determine if can be shared by multiple
GPUs

• Single or double precision will determine the
GPU type

• Data set size (SMP, Cluster, …)

• $$$, Watts, perf

10 Footer Goes Here

CPU GPU

GPU Solution architectures (at node level)
Applicative environment topology 1

PCI-E

High CPU activity Few CPU/GPU
communications

High GPU activity

CPU activity limited to
communications:

Low-end bi-socket servers

Low communication
: PCI-E can be
shared by GPUs

many GPU cores
requested

11 Footer Goes Here

CPU GPU

GPU Solution architectures (at node level)
Applicative environment topology 2

PCI-E

High CPU activity Few CPU/GPU
communications

High GPU activity

CPU intense activity,
Large Data sets :

N x multicore
Tbytes Mem

Low communication
: PCI-E can be
shared by GPUs

many GPU cores
requested

12 Footer Goes Here

GPU Solution architectures (at node level)
Applicative environment topology 3

Few CPU activity

CPU GPUPCI-E

Few CPU/GPU
communications

High GPU activity

Direct access to many GPUs

GPU Dedicated
PCI-E 16x CPU activity limited to

communications :
Bi-socket Servers

PCI-E 16x

13 Footer Goes Here

CPU GPU

GPU Solution architectures (at node level)
Applicative Environment topology 4

PCI-E

High CPU activity High GPU activityCritical CPU/GPU
communications

Direct access to many GPUs

GPU Dedicated
PCI-E 16x CPU intense activity,

Large Data sets :
N x multicore
Tbytes Mem

PCI-E 16x

14 Footer Goes Here

Conclusions

When request to speed-up an existing environment :

• analyze & probe the existing code,

• Identify if/where accelerators fit

• Adding GPU is not exactly playing LEGO !

• Define the right CPU/GPU split, and data set partitioning

• Adapt the HW architecture :

• At node level

• At cluster level

15 Footer Goes Here

Thank You !

