designing a

GPU Computing

Patrick Van Reeth — EMEA HPC Competency Center - GPU Computing Solutions
Saturday, May the 2%th, 2010

1 ©2010 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Current Computing Challenges

Accelerators

mo Supplement multi-core TEaT

Bigge with more silicon

devoted to computation

What is an “HPC Accelerator”?

— Hundreds of functional units executing in parallel

— Speedup applications by 2x, 10x, 30x, or even 100x!
— Really fast

— Really cheap

—Was hard to program, but getting easier now

— Specific applications benefit
» Not useful for most applications

- Excellent for a growing number of highly parallel applications
—When it works, it can really fly!

NVIDIA Tesla Industry Results

— Speedups are 20x to 150x

Interactive lonic placement for Transcoding HD Simulation in Astrophysics N-
visualization of molecular video stream to Matlab using body simulation
volumetric white dynamics H.264 .mex file CUDA

matter connectivity simulation on GPU function

Financial GLAME@lab: An Ultrasound medical Highly optimized Cmatch exact
simulation of LIBOR M-script API for imaging for cancer object oriented string matching to
model with linear Algebra diagnostics molecular find similar

sequences
4 Footer Goes Here

swaptions operations on GPU dynamics proteins and gene @
/

How Accelerators can improve the
Applicative Environment ?

—Multi Nodes
—Multi CPUs

— Multi-cores

—Many cores : brings
Hundreds of functional
units executing In
parallel

eeeeeeeeeeeeee

P Accelerator program
Hybrid Platforms

Leap ahead

AMD{1

Smarter Cholce

FPGAs GPUs

A Nallatech ' SANVIDIA.

AR, AMD D EL)
7 XILINX
e lLarge codes and o Text or integer e Floating point
operating systems e Performance per Watt (engineering

e Floating point computations)

6 Footer Goes Here @

http://www.nvidia.com/page/home.html

Application Speed-up key tactors

Understand the existing code : The tool box is rich :
o Trqcl(’[he most ° Mul’ri-core CPUs

computationally expensive « Memory bwth/Latency

areas (inner loops...) e InterConnect

* Probe the load-balancing on « Accelerators
nodes & cores .PCI-E speed

« SW Environments : C & Fortran
compilers, OpenCL, CUDA, HMPP,

 Probe the communications Allinea, TotalView...

 Examine the data set splits

Be Agnostic tirst !l
R 7

Accelerator Success Factors

TRACK THE MINES !l

GPU rules :
 Embarrassingly parallel is good !

* Minimize memory access versus calculation. Too few calculations per
memory read/write is bad.

» use cache when possible (use memory hierarchy !)
» Thread/core mapping is very important

Redesign the code architecture to scale to the right levels : Node(s), core(s),

GPU(s)
Minimize CPU-GPU transfers S

* Partition the data sets to stay in the onboard memory boundary (T~

* Data set split : shift along the correct X, Y, Z axis | Y

e Hide communications <

Balance CPU (e.g. summations, less flops...) and GPU (e.g. convolutions,
transpositions, ...) execution time appropriately.

8 Footer Goes Here @

Determine the right platform

« CPU / GPU execution time ratio = will
determine the type of node cores, the # GPU
per node

e PCI-E communication between CPU & GPU

will determine if can be shared by multiple

GPUs

» Single or double precision will determine the
GPU type

 Data set size (SMP, Cluster, ...)

- $33, Watts, perf

9 Footer Goes Here @

GPU Solution architectures (at node level)
Applicative environment topology 1

High CPU activity Few CPU/GPU High GPU activity

m communications {\

CPU PCI-E GPU

QU7 7

i [Low communication
CPU activity limited to . PCIE can be nany GPU cores

commgnico’rions: shared by GPUs requested
Low-end bi-socket servers

10 Footer Goes Here

GPU Solution architectures (at node level)
Applicative environment topology 2

High CPU activity Few CPU/GPU High GPU activity
communications {\
CPU PCI-E GPU

7

low communication

CPU intense activity, . PCI-E can be many GPU cores

large Data sets : shared by GPUs requested

N x multicore

Tbytes Mem

11 Footer Goes Here

GPU Solution architectures (at node level)
Applicative environment topology 3

Few CPU activity Few CPU/GPU High GPU activity
m communications {\
CPU PCI-E GPU
~—
v GPU Dedicated u
CPU activity limited to PCI-E 16x

communications :

Direct access to many GPUs
Bi-socket Servers
PCI-E 16x

@ T <
—— V

12 Footer Goes Here V

GPU Solution architectures (at node level)

Applicative Environment topology 4
High CPU activity Critical CPU/GPU

communications

High GPU activity

CPU PCI-E

GPU Dedicated

CPU intense activity, PCI-E 16x
Large Data sets :
N x multicore

Tbytes Mem

PCI-E 16x

13 Footer Goes Here

< \

GPU

7

<

Direct access to many GPUs

Conclusions

When request to speed-up an existing environment :
* analyze & probe the existing code,
« |dentity it/where accelerators fit
 Adding GPU is not exactly playing LEGO !
» Detine the right CPU/GPU split, and data set partitioning
* Adapt the HW architecture :
* At node level

o At cluster level

eeeeeeeeeeeeeeee

15 Footer Goes Here

