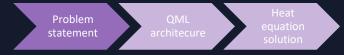


AQCMA - Quantum advantage for aerospace engines design

Solving combustion differential equation on a photonic quantum neural network



Q Solving differential equations for fluid mechanics represent 95% of ONERA internal use of computing time

- Fluid mechanics problems are separated in two : combustion and aerodynamics.
- Combustion alone requires a lot of computing power, thus electricity bill is consequential.
- Combustion reaction are hard multi-physics problem. Better understanding of them would lead to engines polluting less with a better efficiency.

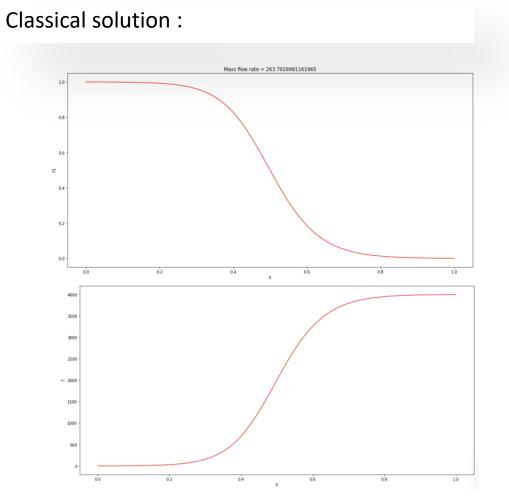
Problem statement : 1D-laminar flame equation with 2 reactants

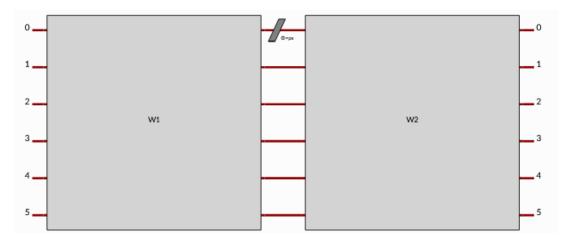
Problem statement :

ONERA

$$\begin{aligned} \partial_x \dot{m} &= 0\\ \dot{m} \partial_x Y_1 - \frac{\lambda}{c_p} L e^{-1} \partial_x^2 Y_1 &= -\tilde{A}TY_1\\ \dot{m} \partial_x T - \frac{\lambda}{c_p} \partial_x^2 T &= \tilde{\Delta}_h \tilde{A}TY_1, \end{aligned}$$

$$\dot{m}Y_1(-\infty) = \dot{m}Y_1(x_0) - \frac{\lambda}{c_p}Le^{-1}\partial_x Y_1(x_0)$$
$$\dot{m}T(-\infty) = \dot{m}T(x_0) - \frac{\lambda}{c_p}\partial_x T(x_0)$$
$$\partial_x Y_1(x_N) = 0$$
$$\partial_x T(x_N) = 0,$$




FIG. 1: Solution obtained after running the code from the Appendix. This plot is reached after 8 steps in the Newton-Raphson method, for a grid size of 256.

QML architecture : a universal Fourier series approximator

Circuit used :

ONERA

Fig. Photonic QML ansatz being a universal fourier approximator.

Ref : Fock State-enhanced Expressivity of Quantum Machine Learning Models Beng Yee Gan, Daniel Leykam, and Dimitris G. Angelakis

Vector of number of photons in each mode

$$n = (n_0, n_1, \dots, n_5)$$

Parametrized beam-splitters meshes :

$$W_1(\theta_1), W_2(\theta_2)$$
 and $\Theta = (\theta_1, \theta_2)$

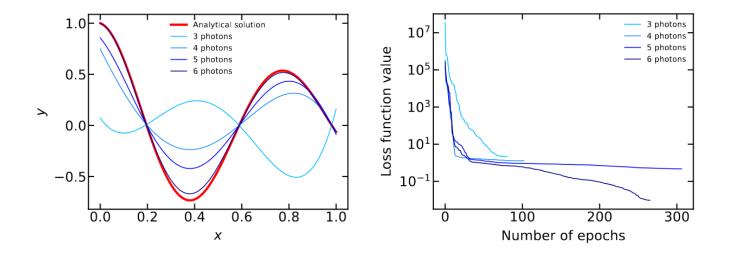
x is the input data as well as the parameter of the phase shifter.

Output :

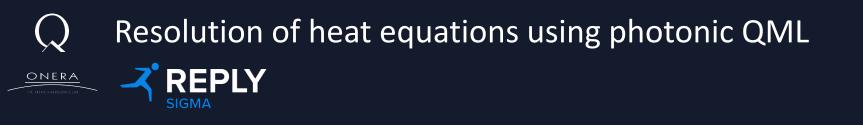
Fourier decomposition:

$$f_n(x,\Theta,\lambda) = \sum_{\omega \in \Omega_n}^N c_{\omega}(\Theta,\lambda) e^{i\omega \cdot x}$$

With $\Omega_n = \llbracket -n; n \rrbracket$ the frequency spectrum one can reach with n photons and $c_{\omega}(\Theta, \lambda)$ the Fourier coefficients.


Q QML architecture : a universal Fourier series approximator to solve differential equations

Loss function for differential equation, $\frac{df}{dx} + \lambda f(x)(\kappa + \tan(\lambda x)) = 0, f(0) = f_0$:


$$\begin{pmatrix} \Theta_{opt}, \lambda_{opt} \end{pmatrix} = \underset{\Theta, \Lambda}{\operatorname{argmin}} \frac{1}{M} \sum_{i=1}^{M} L(\frac{df_n(x_i, \Theta, \lambda)}{dx} + \lambda f_n(x_i, \Theta, \lambda)(\kappa + \tan(\lambda x)), 0) \\ + \eta L(f_n(0, \Theta, \lambda), f_0)$$

With $L(a, b) = (a - b)^2$ for $(a, b) \in \mathbb{R}^2$, and a function f_n discretized on M points.

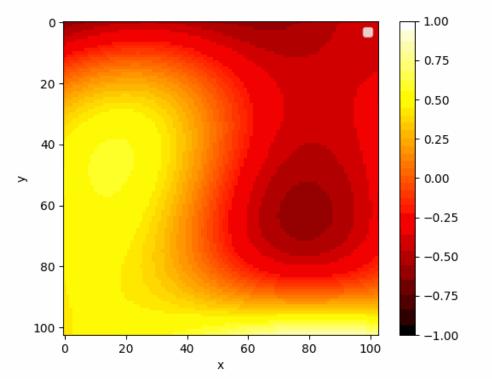

Outcome :

Fig. PDE resolution with a photonic QML ansatz and varying number of photons. On the left the outputted function. On the right the loss function vs number of epochs.

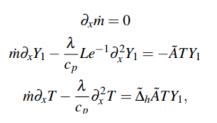
Fig. Resolution of a 2D-heat equation with photonic QML ansatz credits to Brian Ventura and Hugo Jaunin from Reply Sigma

Reply sigma solved a 2D heat equation:

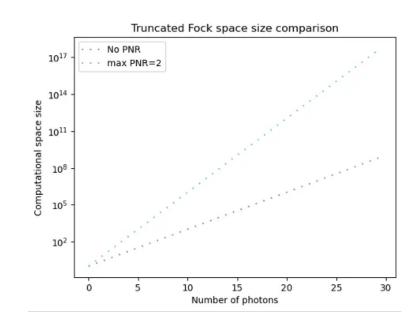
$$\frac{\partial u}{\partial t} = k \left[\frac{\partial^2 u}{\partial^2 x} + \frac{\partial^2 u}{\partial^2 y} \right]$$

with constant boundary and initial conditions

Next steps : enhancement of photonic neural network and runs on QPU

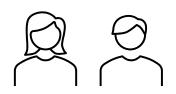

i) Enhance photonic neural networks

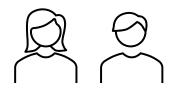
- Add photon number resolution
- Add data-reuploading trick


To solve the couple system of combustion reaction

ii) Runs on QPU

onera


Fig. Coupled system of differential equations to be solved


Fig. Computational space size with and without pseudo-PNR detectors

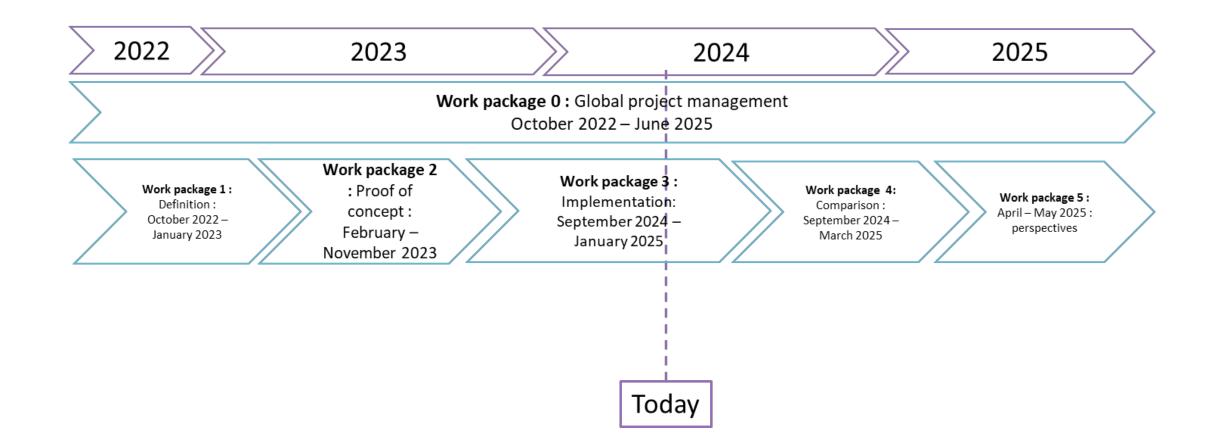
Ref : More about PPNRs on this medium post : <u>https://medium.com/quandela/budgeting-with-qubits-make-the-most-of-your-photons-2519f06b5810</u>. More about their usefullness in QML here : <u>https://medium.com/quandela/photonics-the-fast-lane-towards-useful-quantum-machine-learning-f3112f7221fc</u>

Q Recruitment and knowledge transfer

ONERA

2 internships of six months recruited by ONERA for AQCMA

2 internships of six months recruited by Quandela for AQCMA


1 full-time employee to be hired on solving differential equations using Quantum Computers

1 application engineer working part-time on it and an expert on solving differential equations using Quantum Computers just joined the applications team ONERA staff learned how to use Perceval

Work breakdown structure

