Modularity and disaggregation

Jean Laurent PHILIPPE EMEA CTO

Building Blocks for largest system

Workload Heterogeneity

Hybrid Compute Cluster in a Package

Intel[®] Xeon[®] CPU Max Series codenamed

Sapphire

Rapids

Intel®DLB Intel®DSA Intel®IAA Intel®QAT

Intel®AMX Intel®AVX-512

AMX

Advanced Matrix Extensions Integrated Acceleration Engines **64GB** HBM2e

HBM

Falcon Shores GPU

Next Gen GPU for AI & HPC Converged Habana & Xe IP

Modular Tile-Based Architecture

HBM 3 & I/O designed to scale

Standard Ethernet Switching

Flexible CPU-GPU ratio

A single GPU programming Interface

CXL Programming Model

BACICLE Universal Chiplet Interconnect Express

Tuned to Workloads

... Enabling Differentiation

Leaders in semiconductors, packaging, IP, cloud service providers joining forces

South State

A DECEMBER - EDITION

The second second

Google Cloud

®.

DVIDIA

Serum Teratec 23

a

intel

Qualcomm

SAMSUNG

arm

Ø Meta

ASE GROUP

Microsoft

Advanced Packaging

Integrated Optical I/O

Key innovation for growing data rates, energy efficiency and channel loss minimization needs

The Open Standards_CXL[™] is The Future

Solve these challenges with CXL

- Scaling challenges: latency, bandwidth, capacity
- Increase of heterogenous computing + massive datasets + demanding workloads
 = need for more accessible data, faster
- These computing demands require a more efficient interconnect between CPU and traditional I/O interface

Go Faster

Improves data handling and reduces I/O bottlenecks

Do More

- Memory bandwidth and capacity expansion, efficient access across shared memory
- Enables CPU and accelerators to share memory resources for higher performance

Save More Improves TCO

Sources: Introduction to Compute Express Link White Paper, March 2019 and https://www.computeexpresslink.org/

CXL[™] Consortium – Scope and Feature

Coherent Interface

Leverage PCIe with three multiplexed protocols Built on top of PCIe® infrastructure

Low Latency CXL.Cache/CXL.Memory targets near CPU cache coherent latency (<200ns load to use)

Asymmetric

Complexity Eases burden of cache coherence interface designs for devices

Heterogeneity Enable 3 type of devices based on 3 protocols: memory, cache, IO

Modularity & disaggregation

Allocate and deallocate resources on demand, Enhance memory and cache coherency Peer to peer memory access

Scalable

High speed low latency fabric Composable fabric

enable efficient resources sharing and modularity

intel

Possible Usage Model Transition Examples

	Native DDR4 Native DDR4 Native DDR4 Native DDR4 Native DDR4 PMem PMem PMem PMem PMem PMem PMem PMem PMem PMem PMem PMem PMem PMem PMem	Native DDR5 Native DDR5 Native DDR5 Native DDR5 Native DDR5 Native DDR5 -PCle Gen5-
		NVMe SSDs CXL.Mem CXL Bridge/ Custom Board CXL EDSFF E3 or E1
	Today: Intel® Optane™ Technology Intel® Xeon® CPU + DDR4 + Intel® Optane™ Technology on DDRT	Future: CXL 2.0 Intel® Xeon® CPU + DDR5 + Third-Party CXL Memory Products
Memory Mode	Cost-effective memory to meet workload needs and expanded memory capacity for workload scale-up.	Adds industry standard protocol for software to cache or tier memory.
Memory Expansion, Augmentation	Path for higher capacity than DRAM for workloads to scale-up.	Adds additional memory capacity and memory bandwidth to existing DDR attached DRAM.
Persistent Memory	Fast storage for meta data storage, fast write logs, and caching/tiering acceleration of other storage.	Adds persistence support (non-volatile memory over CXL).
High-Endurance, Performant SSDs	Very fast storage "replacement" for meta data storage, fast write logs, caching/tiering acceleration.	Adds persistence support (memory-semantic storage over CXL).

Coherent Discrete Accelerator for 4th Gen. Intel® Xeon® Scalable Processors

*Available on selected Intel Agilex 7 I-series and M-series FPGAs which contain at least one R-Tile.

https://www.computeexpresslink.org/

Unifying Software Stacks Critical....

Maximizing Impact, Minimizing "energy to solution" through...

open, multiarchitecture, multivendor programming

Open industry specification

Freedom in hardware choice

Performance, productivity & portability

Server Erratec 23

Standards-based, community-driven

oneAPI

Intel's implementation with a set of tools

Optimized for Intel hardware

Proven performance, best-in-class capabilities

Supports SYCL, Fortran, Python, OpenMP, MPI...

Enhanced CUDA-to-SYCL code migration capabilities

Optimizations for TensorFlow & PyTorch

Download free, commercial support available

Write Once, Run Source Code

Across Architectures & Across Vendors

Grid Size

Drive innovation with Open Standards

#