

Extreme scale dataflows in the continuum for next gen giant observatories

Damien Gratadour

SKAO: the largest (radio-)telescope

1 observatory: 2 telescopes (Australia & South Africa) + Headquarters (U.K.)

A giant software observatory, streaming data globally

SKAO: unraveling the unknown

SKA– Key Science Drivers: The history of the Universe

Testing General Relativity (Strong Regime, Gravitational Waves) Cosmic Dawn (First Stars and Galaxies)

> Galaxy Evolution (Normal Galaxies z~2-3)

Cradle of Life (Planets, Molecules, SETI)

> Cosmology (Dark Energy, Large Scale Structure)

(Origin, Evolution)

Cosmic Magnetism

Exploration of the Unknown

A truly Global infrastructure

End users communities across the globe

Cyber Continuum for SKA

Hierarchical architecture: system of systems

Edge-to-HPC computing for SKA

Collect, Converge and Reduce data streams from distributed sensors

- In situ & Online data processing with centralized HPC systems
- Reduce continuous 10 Tb/s stream to 350 PB/year of data products
- Affordable / Adaptable / Frugal / Resilient
- Duplicated in two host countries (with centralized control in UK)

HPC-to-Cloud computing for SKA

Federate resources to analyze distributed data

- Rely on external resources (regional centers), possibly at continental level
- Federate: compute, data logistics, storage, wide-area workflows
- Increasing use of AI for many science programs
- Access patterns, provenance, resources accounting, power management

Challenges across the continuum

Facilities operations

- Multiscale system of systems
- Intercontinental control strategies
 - Including "owned" and "shared" facilities
- x10 years typical lifetime
 - Continuous integration of emerging & non-conventional technologies
 - Preserve operations

Facilities management

- Limited power envelope
 - Access to power grid
- Cost containment
 - Mostly relying on taxpayers money
- Optimized operations
 - Dynamical cyberinfrastructure, including reconfigurable HPC

Centralized and / or Distributed Control

Centralized and / or Distributed Power Management

Key considerations

- The case for **global** infrastructures: **transcontinuum by design**
 - New major challenge in many strategic areas
 - Cover the full edge-to-cloud continuum, with **strong inter-dependencies**
 - Interoperability is a key requirement
 - "**Operational**" cyber-physical infrastructures (as opposed to digital twins)
 - Reliability of all components is mandatory
 - **High efficiency** of **all** components is required
- Need to address the continuum as a whole:
 - Improving one aspect (e.g. energy efficiency) of one component (e.g. HPC) impact others (e.g. sensors / edge)
 - Covering many domains: access to energy, TCO, supply chain, RAS, predictive maintenance, etc..
 - Harnessing many technologies: AI, cyber-security, HPC, big data, etc ...

A SWOT analysis on sustainability for SKA

The pathway to sovereign sustainability

- Tackling inter-dependencies between 3 dimensions:
 - **Societal**: Enhance access to affordable services and knowledge

- Cross-fertilization across application domains
- Environmental: Global Energy efficiency, across the continuum
 - Key responsibility: reduce impact of major infrastructures

|--|

- Operational constraints: Maintain operations (thus European leadership) over long lifespan
- **Economic**: joint public-private development of sovereign technologies

- Strengthen industry across the continuum: increase business opportunities, create jobs
- Reduce development & maintenance cost

Supporting initiative

ECLAT: Laboratoire Commun CNRS-Inria-Atos

- Support structure for French contribution to SKA
- In kind contributions from partners, incl. **INSU, INS2I, INSIS**, multiple **Inria** teams together with **Atos** (now Eviden) **R&D** and **business dev**.
- Truly multi-disciplinary and trans-sectoral collaboration

Supporting initiative

NumPEx: High Performance Numerics for the Exascale

- Large exploratory R&D project (see F. Tessier's talk, this conference)
- Strong involvement including core activities (WP co-lead)
- Identified as a strategic application, building demonstrators at scale
- Including **frugality and resilience** as sustainability indicators

Horizontal challenges, addressed sustainably

Big science requires unprecedented (and exciting !) ICT breakthroughs

- Integrate / leverage emerging HPC / HPDA technologies
 - Across the infrastructure continuum
 - At all scales
 - Maximize science return
 - Converge design and operation / maintenance models: continuous integration
- Al has a key role to play
 - Across the infrastructure and at all scales
 - From producing science to managing the infrastructure
 - Change of paradigm calling for new AI methodologies
- And there are more ...

Let's do it sustainably !

All aspects of sustainability represent both opportunities and challenges

- Close partnerships with industry
- Maximize positive societal impact
- Minimize environmental impact

That's it for today !