
Container technologies for HPC

Thierry.Porcher@doit-now.tech

w
w

w
.d

oi
t-n

ow
.te

ch

Container Technologies for HPC
Forum TERATEC 23

Thierry PORCHER
Do IT Now – Technical Director
thierry.porcher@doit-now.tech

Alberto GARCIA
Do IT Now – HPC Architect
alberto.garcia@doit-now.tech

mailto:alberto.garcia@doit-now.tech
mailto:alberto.garcia@doit-now.tech

What are containers?

● For the traditional HPC user:

○ A way to submit batch jobs using libraries and applications packed in my own image

○ Managing dependencies (applications, version of libraries, OS, …)

● For the AI/new gen user:

○ A way to deploy my own Jupyter/VSCode interactive environment and access GPU resources

○ Up to large scale computations/trainings

Use Case Analysis

● Image administration.
○ How are images stored?
○ What is the format of the images?
○ Are images shared?
○ Is additional infrastructure required?

● Image creation (user and admin).
○ From live filesystem.
○ From a public HUB.
○ From recipe files.

● Image execution on the HPC cluster.
○ Workload manager integration.
○ Parallel file system integration.
○ Accelerator integration.
○ High-performance network integration.

● Extra use cases:
○ [Compatibility with K8s?]
○ Integration with CI/CD tools?
○ Integration with third-party tools (e.g.,

Artifactory, XRAY, …)?

Security Analysis

● Security architectures in container technologies.
○ Root-owned daemon.

○ setuid binaries.

○ Full-unprivileged mode

● Security analysis.
○ CVE overview during last years.

○ Releases and updates periodicity during last years.

vs.

Other aspects to consider when choosing a technology

Interoperability analysis
● Compliance with OCI image specification.

○ I.e., can the technology use other image formats
without conversion?

● Compliance with OCI runtime specification.
○ I.e., can the technology be used by other

technologies on top (e.g. K8s).

● Compliance with OCI registry specification.
○ I.e., can the technology download/use containers

from public hubs?

License and support

● Type of license.
○ Free or commercial.

● Support models.
○ Type, SLA, and availability.

● Community activity.
○ Non-official support.

Container Tools

Docker Model

● Architecture
○ Root-owned daemon.

■ Spawns containers.
■ Build images.
■ Pulls/pushes imgs from/to registry.

○ Only root or the docker group can
interact with the daemon.

■ Anyone inside docker group can
easily escalate to root.

○ User owning the container must be
specified.

■ Otherwise, it will be root.

● Security model
○ As root, Docker can leverage the 6

privileged namespaces.
■ Create virtual networks.
■ PID abstraction.
■ Resource limitation (cgroups).
■ Create and mount images.

Singularity Model

Architecture

● No daemon.

● Single process execution.
1. Singularity process launched.
2. Namespaces setup and checks.
3. Replace code by the user application

(execvp).

● Same users inside and outside the
container. No user mapping.

Security model

● Some setuid binaries in order to.
○ mount the Singularity container image.
○ create the necessary namespaces in the kernel.
○ bind host paths into the container.

● Full rootless possible with user
namespaces.

○ no-setuid version of the binaries.
○ Reduced features.

■ No images.
■ No bind mounts.

Singularity vs. Apptainer

● Singularity code forked in 2020 and now two products coexist.
○ Singularity from Syslabs.

■ https://sylabs.io/docs/

■ SingularityCE but also SingularityPRO and Singularity Enterprise if advanced support is needed.

○ Apptainer which joined the Linux Foundation

■ https://apptainer.org/

■ Official support by CIQ

● Singularity and Apptainer differ fundamentally on the security architecture.
○ Singularity opts for a setuid model and avoids the use of user namespaces.

○ Apptainer opts for full unprivileged model, relying heavily on user namespaces and the newest kernel features.

https://sylabs.io/docs/
https://apptainer.org/

Sarus Model (CSCS)

Idea

● Container runtime and tools heavily focused on HPC.
○ Batch scheduler, MPI, and GPGPUs integration.
○ Minimal overhead on container spawn.

● Key element: OCI hooks.
○ Custom plugins that allow to interface subsystems natively

within the container.
■ MPI
■ Parallel file systems.
■ GPGPUS

Security model
● Setuid binaries.
● No root daemon on target platform.
● No user namespaces.

Architecture

● Extend image with config.json file in order to add metadata.

● Delegate image life-cycle (creation, storage) to docker.
○ Docker registry deployed in an auxiliary platform near to the

supercomputer.

Podman Model

Idea
● Provide a replacement of Docker avoiding the root-owned daemon.

Architecture
● No daemon, no setuid executables.
● fork/exec model: podman spawns the container.
● Images stored in $HOME

Security model
● Total rootless for basic operations.

○ Spawn a container.
● Execute with sudo when it’s necessary.

○ Build an image.
● Tricks for avoiding privileged operations.

○ FUSE for certain types of mounts (OverlayFS).
○ slirp4netns program to set user mode networking.

Other
● In theory, interoperable with K8s.

https://github.com/rootless-containers/slirp4netns

Choices

● Purpose: general purpose
vs. HPC-oriented.

● Maturity: well-established
vs. emerging

● OCI vs. proprietary formats.

● Security: risk vs. usability.

Docker Podman

Singularity
Apptainer Sarus

General
purpose

HPC
oriented

EmergingWell-
established

Chosen Technologies

Sarus

● OCI compliant. HPC focused.

● Best OCI solution for the short-term.

Apptainer

● Full unprivileged. HPC focused.

● Best solution for the long term, if it becomes more OCI compliant.

Podman

● Best docker alternative for general purpose and K8s.

● Interesting to show the limitations on HPC environments.

CAP_CHOWN

Deployment and Testing

● Install the technology on client cluster.
○ Tested on both RHE7 and RHE8

○ 2-nodes testing environment (node271 and node272).

■ 2x Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

○ Favor non-privileged installations with customized paths.

● Launch a containerized application using the technology.
○ HYDRO application: cneshpc / benchs_parallel · GitLab

○ Benchmark for testing compiler and MPI libraries installation.

○ Containerized with MPICH 3.4.3 and OpenMPI 3.1.4.

● Measure and compare performances.
○ Use singularity as baseline.

https://gitlab.cnes.fr/cneshpc/benchs_parallel

Study MPI – All Technologies

● Tests completed.
○ Pull and run times.

● Space for improvement.
○ Scratch space local to

the nodes.

○ Sarus native MPI hook.

○ Podman optimization.
0

10

20

30

40

50

60

70

80

Native IntelMPI Singularity
MPICH

Apptainer MPICH Sarus MPICH Podman
OpenMPI

HYDRO (250x25) 48 processes 2 nodes E2E time

Pull Run

*

Conclusions

● No single technology covers all the use cases.

● Relevance of the latest kernel features.

● Landscape continuously evolving.

● Focus on client needs. Tailored solutions.

● Next step: interactive and full-stacked container solutions for end users.

w
w

w
.d

oi
t-n

ow
.te

ch

Some references in Earth Science and
Meteorogical projects

References 1/2

● KAUST

○ Installation of a large BeeGFS filesystem used extensively by the Earth Science Department

■ 3.8 PB, 82 GB/s, 10 data servers, 12 meta data servers

● Bureau of Meteorology (Australian Gvt)

○ Dashboards to monitor and visualize HPC clusters efficiency

References 2/2

● Bengladesh meteorological national center

○ Cluster installation in a high availability configuration

○ BeeGFS solution for storage

● Meteorological Service of Catalonia

○ Cluster installation, tunning HPC environment and applications, support.

