

31 MAI & 1er JUIN 2023 • Au Parc Floral, Paris

*infopro*digital

Un événement organisé par

Teratec

QaaS: Quantum as a Service

PLATFORM

MPQP: Multi Platform Quantum Programming

A UNIFIED AND INTUITIVE PROGRAMMING LIBRARY

- 1. One language, all platforms
- 2. Helpful for designing hybrid Q/C algorithms
- 3. Wrap user code from a specific language to another through our library

VQA: Variational Quantum Algorithms

A quantum equivalent of neural networks

• Low cost in the number of qubits

An important optimization step \rightarrow

An algorithm to compute circuit distances

Architecture is key! → A library to rapidly test various architectures (called Ansätze)

WORK IN PROGRESS

Quantum Noise

The main <u>obstacle</u> to reach quantum advantage

Bit Flip and Phase Flip Gate noise

Close to hardware providers

Noise study – Different directions

Quantum Monte-Carlo

What

Monte-Carlo simulations:

to predict possible outcomes of an uncertain event through repeated random sampling

Quantum algorithm:

quantum state that models the system given by the translation from classical to quantum

Advantage

Quantum algorithm provides a **<u>quadratic speedup</u>** over classical Monte Carlo methods

Application

Turbulent mixing: complex fluid dynamics (storm simulations, ocean modeling...)

• <u>Combustion</u>:

chemically reacting turbulent flows (*practical combustion systems efficient and environmentally friendly*)

H-DES: Hybrid Differential Equation Solver

Pillar of mathematical modeling

From atmospheric phenomena to atomic interactions, **they are everywhere**

Real processes are **nonlinear** Numerical errors harder to control In classical methods the domain is discretized Finer grids = higher precision + computational time

QUANTUM COMPUTING CAN IMPROVE THIS APPROACH AND UNLOCK OTHERS

Exponentially finer grids and error-free continuous methods

Potentially reducing energy consumption*

Flexibility! Adaptable to any system described by PDEs!

* **M. Lubasch** *et al.***, Phys. Rev. A**. 2020, 101, 010301(R). ****F. Gaitan,** Adv. Quantum Technol. 2021, 4, 2100055 ONLY a small part of the algorithm is delegated to a Quantum Computer $_{12}^{**}$

Use cases

NOW:

Material Deformation & Combustion

WHY?

Better simulations streamline prototyping and can reduce carbon emissions

- Both processes are nonlinear: ideal to test quantum advantage
- Both demand power-hungry HPC: Quantum computing might alleviate it

Partners, collaborations

Further research

Quantum Advantage

BOTH IN TIME AND ENERGY

Comparing the quantum computers of today and tomorrow with their classical supercomputer counterpart.

Quantum Games

Quantum Contextuality

A QUANTUM PROPERTY TO INVESTIGATE

For possible applications and connections with other important quantum features.

Publications

Quantum supremacy? Not so fast.

What stands in the way of variational quantum algorithms toward the quantum advantage

Getting to know Quantum Fourier Transform

Quantum Entanglement: how to classify it?

Ways for Quantum Computing to help fight climate change

How to bring Quantum Programming to everyone?

Not all cats are grey at night — comparing different qubit technologies

Interpretations of quantum mechanic - The diatribe between realists and orthodox before Bell's theorem

[1] G. Amouzou, J. Boffelli, **H. Jaffali**, K. Atchonouglo, and F. Holweck. "Entanglement and Nonlocality of Four-Qubit Connected Hypergraph States." International Journal of Quantum Information 20, no. 03 (April 2022): 2250001.

[2] F. C. V. de Brito, I. G. da Paz, J. B. Araujo, and M. Sampaio. "Biphoton Phase-Space Correlations from Gouy-Phase Measurements Using Double Slits." *Physical Review A* 104, no. 6 (December 17, 2021): 062430.

[3] F. Holweck, **H. de Boutray**, and M. Saniga. "Three-Qubit-Embedded Split Cayley Hexagon Is Contextuality Sensitive." *Scientific Reports* 12, no. 1 (May 26, 2022): 8915.

[4] H. de Boutray, F. Holweck, A. Giorgetti, P.-A. Masson, and M. Saniga. "Contextuality Degree of Quadrics in Multi-Qubit Symplectic Polar Spaces." arXiv, April 9, 2022

[5] Milazzo, N., Giraud, O., Gramegna, G., & Braun, D. "Principles of quantum functional testing." arXiv, September 23, 2022.

MEDIUM

(I Can't Get No) SATisfaction

Quantum Machine Learning: A quick overview

STAR WARS: IBM, AMAZON, and ATOS for Hybrid Quantum Algorithms: Fighting for Solving Differential Equations

To reject or not to reject, that is the question.

ARTICLES

