Forum TERATEC 23 Unlock the future

31 MAI & 1^{er} JUIN 2023 • Au Parc Floral, Paris

Un événement organisé par

infoprodigital

Hybrid Computing in HPC

Cyril ALLOUCHE VP, Quantum R&D 31/05/2023

an atos business

Content overview

⁰¹ NISQ QPUs into an HPC center

02

Towards an High Performance Hybrid Computing (HPHC) Framework

01 NISQ QPUs into an HPC center

Noisy Intermediate Scale Quantum

Defining NISQ

NISQ (Noisy Intermediate Scale Quantum)

- \rightarrow ~hundreds of noisy qubits
- → ~hundreds instructions

Programming model: Control flow managed by CPU Quantum circuits created by CPU Repeated evaluation of circuit by QPU

\Rightarrow QPU online slave of CPU

EVIDEN

NISQ Algorithm(s)

The variational algorithm

NISQ in a HPC environment

- NISQ programming languages : mostly interpreted, mostly Python
- QPU scalability: ?
- CPU scalability: ?
- Challenge : scheduling QPUs

Integrating NISQ QPUs into an HPC datacenter

• EuroHPC project HPC-QS, France HQI

02 Towards an High Performance Hybrid Computing (HPHC) Framework

High Performance Hybrid Computing

Defining HPHC

HPHC (High Performance Hybrid Computing)

- → ~thousands of perfect logical qubits (with QEC)
- → Multi-QPUs
- \rightarrow Use of QPUs in HPC centers

_ong term

Entire application, composed of classical and quantum parts

HPC programming languages (compatibility with C, C++, Fortran, etc.)

What will an HPHC program look like?

> Architecture of HPHC quantum devices ?

QPUs will have classical capabilities

Architecture of an hybrid quantum device

QPUs will be composed of:

- A *controller* receiving instructions and scheduling them on the *quantum part*
- A quantum part being the core of the QPU

eviden

Quantum capabilities

Defining quantum specific operations

Access to quantum memory

Safe uncomputation should be used to reset a register

Q-Pragma – A C++ Framework for LSQ computing

A framework composed of a library and some pragmas

<u>Q-Pragma C++ framework:</u>

- Pragmas to extend C++ language, to add:
- Hybridization capabilities
- Quantum capabilites
- A library providing:
- Quantum types

...

Quantum routines

<u>Q-Pragma example</u>

```
#pragma quantum routine
void bell pair(const qbool & qb0,
               const gbool & gb1) {
   H(qb0);
    CNOT(qb0, qb1);
}
int main() {
    ...;
    ::bell pair(qb1, qb2);
    ::bell pair.dag(qb1, qb2);
    ::bell_pair.ctrl(qc, qb1, qb2);
}
```


Perspectives for Q-Pragma

- Open source specification
- Federate a community from HPC
- Continue co-design , guided by HPC use cases

EVIDEN

Questions

EVIDEN

Thank you!

For more information, please contact: Cyril ALLOUCHE

Confidential information owned by Eviden SAS, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied, circulated and/or distributed nor quoted without prior written approval from Eviden SAS.

© Eviden SAS