

Towards the recognition of the world's flora

Alexis Joly, Hervé Goëau, Valeriu Codreanu, Jean-Christophe Lombardo

Taxonomic gap

- Plant identification is crucial for sharing and accessing knowledge about plants
 - Food crisis
 - Biodiversity crisis
- But the taxonomic gap is a tricky problem
 - Traditional tools only suitable for specialists
 - Less and less specialists

An innovative citizen science platform making use of machine learning to help people identify plants through their mobile phone

- 11 languages
- 17K species (illustrated by 800K revised images)
- 23 projects & micro-projects (e.g. asian plants, trees of South Africa, etc.)
- 30M raw plant images
- 55M sessions / 192M screen views
- 12K followers on social networks

Last 12 months: 3,352,788 users in 235 countries				
More than 5 sessions	1,469,423			
More than 10 sessions	876,698 172,666			
More than 25 sessions				
More than 100 sessions	14,167			
1. E United States	412,062 (17.63%			
2. France	357,001 (15.28%			
3. Germany	191,180 (8.18%			
4. II Italy	160,388 (6.86%			
5. Spain	126,940 (5.43%			
6. Brazil	115,821 (4.96%			
7. 🔡 United Kingdom	77,864 (3.33%			
8. 🚾 India	64,488 (2.76%			
9. Netherlands	61,830 (2.65%)			
IO. I●I Canada	57,159 (2.45%			

Pl@ntNet

Professional Entertainment

J	Branches d'activités	Eff.	%
1	Agriculture et agroalimentaire	34	40,0%
	Industrie	0	0,0%
	Energie	0	0,0%
è	Commerce et artisanat	8	9,4%
	Tourisme	2	2,4%
	Télécoms et internet	0	0,0%
8	Recherche	5	5,9%
	Enseignement	15	17,6%
	Finance et assurance	0	0,0%
9	Autre service	21	24,7%
	Total	85	100,0%

Usage

Association départementale OCCE de la Réunion 18 rue de la Gare - BP 70043 - 97803 SAINT-DENIS-CEDEX 9 Tel : 02 62 21 54 50 - 06 92 34 54 50 - Courriel : ad974@occe.coop www.occe.coop/ad974

OCCE AUTONOMES & SOLIDAIRES

Technology: Convolutional Neural Networks

output
$$a_j^l = \sigma \left(\sum_k w_{jk}^l a_k^{l-1} + b_j^l \right)$$

Technology: Convolutional Neural Networks

Technology: Convolutional Neural Networks

Billions of adjustable parameters (weights)
Requires high computing resources (GPUs or large clusters of CPUs)

Transfer learning (fine-tuning)

Problem: CNNs require huge training data to learn the billions of parameters

Solution: Learn domain specific features by transfer learning

- 1. Train CNN on a generalist image dataset with millions of images
- 2. Keep the weights of the lowest layers but remove/reset the top layers
- 3. Feed forward and back-propagate new domain specific images

Evaluation

- Pl@ntNet organizes a world-wide challenge since 2011 Tens of research teams working on Pl@ntNet data
- **System-oriented** benchmarks/competitions

Life | e

	2011	2012	2013	2014	2015	2016	2017
Espèces	71	126	250	500	1,000	1,000	10,000
Images	5,400	11,500	26,077	60,962	113,205	121,205	1.2 M
Nb. of particip.	8	11	12	22	15	16	17
Best perf.	0,209	0,38	0,393	0,456	0,652	0,742	0,92!

PlantCLEF 2018: Experts vs. Machines plant images identification

- 9 of the best of the best experts of the French flora
- 100 obs. including very difficult taxonomic groups

Is the problem solved? Not really...

Is the problem solved? Not really...

The Big One

- We did query Bing and Google image with 300K species names
 - Using ThePlantList: the first effort to list all plants on earth
- We collected 12 million images of 294K plant species (1.5 Tb):
 - Expert data (Encyclopedia of Life, 350K images) + Citizen science data (Pl@ntNet data, 400K images) + Web data (11 M images)
- Highly imbalanced distribution: only 50K species with more than 10 images, 50% with 1 images)
- **Noise:** depends on the species

"Arnica montana"

Challenges/questions

Scalability to hundreds of thousands of classes

- Which hardware?
 - Memory usage: last layer is 300 times larger than state-of-the-art models
 - To distribute or not to distribute ?: communication cost, large batch size
 - CPU vs GPU?
- Which network architecture ?
 - Convergence of state-of-the-art models? No guaranty
 - Do we need a new dedicated architecture?
 - Acceptable training time?
- Quality of the learned models?
 - Top-1, top-5, top-30 accuracy? On average? In the long tail?
 - Robustness to noise in the training data?

Platforms & frameworks

GENCI proposed us to be beta-tester of 2 prototype plants.

- Oussant: GPU cluster hosted by IDRIS (IBM OpenPOWER platform)
 - 12 nodes IBM Power Systems x 4 GPU Nvidia P100 + Infiniband
 - IBM powerAI framework v4: Caffe-DLL & TensorFlow-DLL
- Irene: CPU cluster hosted by CEA (Intel skylakes platform)
 - 1600 nodes x 48 Intel Skylakes
 - Intel-CAFFE library
- Preparatory phase on CINES CPU clusters (Intel-CAFFE library)
 - Occigen: 3306 nodes x 2 Intel processors (12-14 cores)
 - **Frioul**: 48 nodes x Intel KNL processor (68 cores)

Evaluation methodology: set up

- Use state-of-the-art ConvNet with good size/performance tradeoff
 - Inception v2, ResNet-50
 - Extend them to 294K classes
- Distribution with synchronous Stochastic Gradient Descent

$$\vec{R} = \sum_{j=1}^{N} \vec{V_j}$$

- synchronize the gradients of N learners through a collaborative reduction/communication (such as allreduce)
- High-dimensional = millions of values
- Best **performances** in literature
 - FaceBook, ImageNet in 1 hour, 32x8 GPU P100, All reduce, batch size=8192
 - IBM powerAl, ImageNet in 50 min, 64x4 GPU P100, Multi-ring, batch size=8192
 - Intel-CAFFE, ImageNet in 28 min, 1.5K Intel KNL (100K cores), MLSL, batch size=48K
 - Preferred Networks, ImageNet in 15 min, 1K GPU P100, All reduce, batch size=32K

Evaluation methodology: test set

- **30K never published images** of expert botanists
 - Stored on their local disks
 - Complex groups in the long tail of the distribution
 - 342 Orchids species
 - 1K Guyana species
 - 469 Alpine species
 - 75 Grass species
- PlantCLEF 2017 test set (25K images)
 - 1K species living in America and Europe (including common ones)
 - Never published labels

Ouessant experiments (1/4)

By Hervé Goëau, data scientist Pl@ntNet (CIRAD / Inria)

- Encountered difficulties: feedback from a data scientist without experience in HPC or distributed deep learning
 - **File systems / inodes issues**: quota exceeded notifications, file creation errors, etc.
 - **No internet access:** no wget, no curl to download pre-trained models, tests, etc.
 - Lack of documentation
 - **Limitation of the installed frameworks:** old versions, no data augmentation, no shuffling, etc.
 - **Jobs limitation** (20h00 & 4 nodes)
 - Within the allocated time: No efficiency gain observed in multi-nodes

Ouessant experiments (2/4)

By Hervé Goëau, data scientist Pl@ntNet (CIRAD / Inria)

- Training models "from scratch" was not possible
 - Several weeks on a single node
 - Without guaranty of (good) convergence
 - With a 20h jobs limitation
- Succeeded in training a model at the scale of the world's flora using transfer learning
 - Inception v2 pre-trained on ImageNet and fine-tuned on 294K species in 2 steps
 - 1. Freeze the model except the last layer
 - 2. Fine-tune all layers
 - About **60h of training** on 1 node with 4 P100 GPUs

Ouessant experiments (3/4)

By Hervé Goëau, data scientist Pl@ntNet (CIRAD / Inria)

The model works! state-of-the-art performance on PlantCLEF
 2017 dataset (without using ensembles)

Our world's flora model (with different testing configurations: data augmentation, post-filtering, duplicates removal, multi-image)

Ouessant experiments (4/4)

By Hervé Goëau, data scientist Pl@ntNet (CIRAD / Inria)

Performance in the long tail is low but fair with regard to 294K classes

Dataset	Top1 accuracy (single image)	Top1 accuracy + multi-image	Top5 accuracy + multi-image
Orchids	0.04	0.12	0.22
Alpine	0.19	0.25	0.40
Guyana	0.07	0.07	0.12
Grasses	0.37	0.57	0.71

Random 0.000003

0.000003

0.000015

CINES experiments (1/5)

- Team

- Valeriu Codreanu & Damian Podareanu (Research engineers at SurfSara, state-of-the-art results on1K Intel Skylake)
- Jean-Christophe Lombardo (Research engineer at Inria Pl@ntNet)
- Gabriel Hautreux (HPC engineer, **CINES/GENCI**)
- Vikram A Saletore (Principal Engineer for Artificial Intelligence Products at Intel)

- Objective

- Scaling Deep learning on CPUs using INTEL-CAFFE (optimized for skylakes CPUs)
- CEA Irene cluster (1600x48 Skylake hearts) in July (machine delivery)

- Preparatory phase on Occigen & Frioul CPU cluster from CINES

- Occigen: 3306 nodes x 2 Intel processors (12-14 cores)
- Frioul: 48 nodes x Intel KNL processor (68 cores)

CINES experiments (2/5)

Encountered difficulties

- Intel-CAFFE (MLSL library) requires a password less ssh connexion for initialization (only possible to run in interactive mode)
- Protobuf library is limited to 2Gb files: impossible to serialize ResNet-50 model with 275K classes → dimensionality reduction trick

Network size: 1.8GB

CINES experiments (3/5)

Scaling efficiency experiments

Lustre striping makes a big difference

	2 nodes	32 nodes	Scaling efficiency
No striping	47.5 img/s 23.7 img/s/node	303 img/s 9.5 img/s/node	40.1%
Lustre striping stripe count: 64 stripe size: 32M	47.5 img/s 23.7 img/s/node	688 img/s 21.5 img/s/node	90.7%

CINES experiments (4/5) IGENCI

Scaling efficiency experiments

Broadwell (BDW28) scaling results:

2 nodes; global batch size: 128; Throughput: 28.45 img/s/node. Aggregate throughput: 56.9 img/s 32 nodes; global batch size: 2048; Throughput: 25.6 img/s/node. Aggregate throughput: 819 img/s 64 nodes; global batch size: 4096; Throughput: 25.1 img/s/node. Aggregate throughput: 1606 img/s 128 nodes; global batch size: 8192; Throughput: 24.6 img/s/node. Aggregate throughput: 3150 img/s

→ 86.5% scaling efficiency when going from 2 to 128 BDW nodes

Haswell (HSW24) scaling results:

128 nodes; global batch size: 8192; Throughput: 20.15 img/s/node. Aggregate throughput: 2580 img/s

ightarrow 82.2% scaling efficiency when going from 2 to 128 HSW nodes

CINES experiments (5/5)

Succeeded to learn two new models on Frioul and Occigen CPU clusters

	Top1 accuracy (all world flora test sets)	Top5 accuracy (all world flora test sets)	Training time
Ouessant: 1 node - 4 x P100 Inception v2 fine-tuned 10 epochs	0.336	0.437	60 hours 6 hours/epoch
Frioul: 40 KNL nodes ResNet-50 fine-tuned 37 epochs	0.355	0.440	37 hours 1 hour/epoch
Occigen: 128 nodes (BDW) ResNet-50 from scratch 100 epochs	0.363	0.449	28 hours 17 minutes/epoch

Conclusion/perspectives

Conclusions

- State-of-the-art CNNs scale to 300K classes (without much modifications)
- Synchronous SGD on hundreds of CPU nodes provides high scaling efficiency but this requires significant know-how
- Training data remains a core problem

Perspectives

- Irene cluster: 1600 skylake nodes
- Inria Project Lab HPC-Deep Learning: PhD on the joint optimization of network architecture and resource allocation

Thank you

