Approches mathématiques pour la simulation multi-échelle des matériaux

Claude Le Bris

Ecole des Ponts and Inria, FRANCE

http://cermics.enpc.fr/~lebris

based on a series of works by
F. Legoll, T. Lelièvre, G. Stoltz and collaborators
Numerical simulation of coarse-grained stochastic dynamics

Gabriel STOLTZ

gabriel.stoltz@enpc.fr

(CERMICS, Ecole des Ponts & MATHERIALS team, INRIA Paris)

Work also supported by ANR Funding ANR-14-CE23-0012 ("COSMOS")
Dissipative Particle Dynamics and the like

- Simulation of shock waves at the atomistic level requires very large systems

- Coarse-graining through stochastic dynamics which is Galilean invariant to friction using relative velocities (consistence with hydrodynamics)

- **Dissipative Particle Dynamics with conserved energy (DPDE)**
 - can be used in nonequilibrium situations
 - replace a molecule or some group of atoms by a mesoparticle
 - consistent thermodynamics
 - input: static properties (ab-initio), dynamical parameters

- **Collaboration** with J.-B. Maillet (CEA/DAM) and J. Brennan (Army Research Lab); 2 PhD students (A.-A. Homman and G. Faure)
Dissipative particle dynamics with conserved energy

- **Coarse-graining** interpretation:
 - a (fragment of a) molecule is replaced by a mesoparticle
 - \((q_i, p_i)\) describes the center of mass of the \(i\)th mesoparticle
 - missing degrees of freedom described by an internal energy \(\varepsilon_i\)

- Evolution at constant total energy
 \[
 \mathcal{H}(q, p, \varepsilon) = V(q) + \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \sum_{i=1}^{N} \varepsilon_i
 \]

- **Microscopic state law**: entropies \(s_i = s_i(\varepsilon_i)\), internal temperature defined from the entropy as
 \[
 T_i(\varepsilon_i) = \frac{1}{s_i'(\varepsilon_i)}
 \]

- Simplest case: harmonic internal degrees of freedom, \(T(\varepsilon) = \varepsilon/C_v\)

Equations of motion

\[
\begin{cases}
dq_i = \frac{p_i}{m_i} \ dt \\
dp_i = -\nabla q_i \ V(q) dt + \sum_{i \neq j} \gamma_{ij} \chi^2(r_{ij}) v_{ij} dt + \sigma_{ij} \chi(r_{ij}) dW_{ij},
\end{cases}
\]

\[
d\varepsilon_i = \frac{1}{2} \sum_{j \neq i} \chi^2(r_{ij}) \left(\gamma_{ij} v_{ij}^2 - \frac{\sigma_{ij}^2}{2} \left(\frac{1}{m_i} + \frac{1}{m_j} \right) \right) dt - \sigma_{ij} \chi(r_{ij}) v_{ij} \cdot dW_{ij}
\]

where \(W_{ij} = -W_{ji} \), \(\chi \) is a cut-off function and \(v_{ij} = \frac{p_i}{m_i} - \frac{p_j}{m_j} \)

Invariant measures

\[
\rho(dq \ dp \ d\varepsilon) = f(\mathcal{H}(q, p, \varepsilon)) g \left(\sum_{i=1}^N p_i \right) \exp \left(\sum_{i=1}^N s_i(\varepsilon_i) \right) \ dq \ dp \ d\varepsilon,
\]

- Fluctuation-dissipation relation

\[
\sigma_{ij} = \sigma, \quad \gamma_{ij} = \frac{\sigma^2 \beta_{ij}(\varepsilon_i, \varepsilon_j)}{2}, \quad \beta_{ij}(\varepsilon_i, \varepsilon_j) = \frac{1}{2k_B} \left(\frac{1}{T_i(\varepsilon_i)} + \frac{1}{T_j(\varepsilon_j)} \right)
\]
Numerical integration of DPDE: our key contribution

- “Naive” schemes lead to internal energies $\varepsilon_i < 0$: simulation stopped!
 - this happens more often for small heat capacities
 - this will necessarily happen at some point for large systems

- **Stable and accurate integration schemes?**
 - **Splitting strategy**: Hamiltonian part vs. elementary stochastic dynamics
 - elementary stochastic dynamics reduce to a dynamics on v_{ij} only
 - superimpose a **Metropolis correction** for discretizations of these reduced dynamics\(^1\), even in the nonequilibrium setting considered

- **Pro/cons of this integrator:**
 - automatically corrects for negative internal energies (stabilization)
 - parallelization/threadability limited \rightarrow dedicated schemes for that\(^2\)

Detonation waves in nitromethane

Particle velocity, temperature, progress variable, pressure

Orders of magnitude of current simulations

- **At CEA/DAM**
 - number of particles \(N \sim 10^6 - 10^8 \)
 - number of cores: several thousands, with vectorized/threadable code ExaSTAMP
 - number of steps \(10^6 \), timestep \(\Delta t \sim 1 - 5 \times 10^{-15} \)
 - CPU time: a few \(\mu s/N/\text{ts} \) for simple LJ potential, \(\times 10 - 100 \) for more complicated one

- **At Army Research Lab (Aberdeen Proving Ground)**
 - number of particles up to \(N = 1,126,926,339 \)
 - machines: Thunder (USAF), Stampede2 (Texas Advanced Computing Center), Trinity/KNL (Los Alamos)
 - 3,000 to 8,900 nodes (Intel Xeon Phi 7250 KNL or E5-2699v3); between 4.3 and 27 PFLOPS/s (in double precision)
 - simulation time 0.5 ns
Adaptive Multilevel Splitting algorithms for rare event simulations

Tony Lelièvre
Ecole des Ponts ParisTech and INRIA

Joint work with C.-E. Bréhier, F. Cérou, M. Gazeau, L. Goudenège, A. Guyader, C. Mayne, M. Rousset and I. Teo
Motivation 1: Simulations of biological systems

Unbinding of a ligand from a protein

Trypsin with various conformational states of benzamidine

Elementary time-step for the molecular dynamics $= 10^{-15} \text{s}$
Dissociation time $\approx 0.02 \text{s}$

Challenge: bridge the gap between timescales
Motivation 2: Radiation protection
Monte Carlo particle transport

Concrete tunnel with a neutron source
How to compute the neutron flux at the detector?
Challenge: the flux is very small
Mathematical setting: rare event computation

Consider a stochastic process \((X_t)_{t \geq 0}\) and two stopping times \(\tau_A\) and \(\tau_B\). Objective: simulate and compute the probability of the event \(\{\tau_B < \tau_A\}\) when \(\mathbb{P}(\tau_B < \tau_A)\) is very small \((10^{-8} \text{ to } 10^{-18})\).

Basic idea of splitting technique: find intermediate events which are easier to simulate:

\[
\{\tau_{z_1} < \tau_A\} \supset \{\tau_{z_2} < \tau_A\} \supset \ldots \supset \{\tau_{z_{\text{max}}} < \tau_A\} \supset \{\tau_B < \tau_A\}
\]

and simulate the successive conditional events: for \(k = 1, 2, \ldots,\)

\[
\{\tau_{z_k} < \tau_A\} \text{ knowing that } \{\tau_{z_{k-1}} < \tau_A\}
\]

where \(\tau_z = \inf\{t, \xi(X_t) > z\}\) for a well chosen real valued importance function \(\xi\).

Adaptive feature: build the intermediate levels \((z_i)_{i \geq 1}\) on the fly.

Example 1: In collaboration with the group of K. Schulten (C. Mayne and I. Teo), AMS is currently implemented in the NAMD code. We have studied the unbinding event of benzamidine from trypsin.

Estimated dissociation rate: $k_{off} = (260 \pm 240) \text{s}^{-1}$ which is in the same order of magnitude as the experimental rate $(600 \pm 300) \text{s}^{-1}$.

Overall simulation time: 2.3μs which is 4 orders of magnitude shorter than than the estimated dissociation time.

MD setup: about 70 000 atoms, CHARMM36 force field, NPT conditions (298 K).
Numerical results

Example 2: In collaboration with CEA (Eric Dumonteil, Cheikh Diop and Henri Louvin), AMS is currently implemented in the Tripoli code.

Multiscale computations based on MsFEM: model reduction and goal-oriented a posteriori error estimation

Frédéric Legoll
Ecole des Ponts & project-team MATHERIALS, INRIA Paris

Joint works with Ludovic Chamoin (LMT Cachan)

\[-\text{div} \left[A_\varepsilon(\mu, x) \nabla u^\varepsilon(\mu, x) \right] = f(x) \text{ in } \Omega, \quad u^\varepsilon = 0 \text{ on } \partial \Omega\]

where μ is a parameter. We take

\[A_\varepsilon(\mu, x) = \lambda(\mu, x) A_\varepsilon(x), \quad \lambda(\mu, x) = \mu + (1 - \mu) \lambda_c(x)\]

Depending on the value of μ, the central channel is present or not. Very large contrast in A_ε: 10^6
Model reduction approaches

\[-\text{div}\left[A_\varepsilon(\mu, x) \nabla u_\varepsilon(\mu, x)\right] = f(x) \text{ in } \Omega, \quad u_\varepsilon = 0 \text{ on } \partial\Omega\]

- **Direct MsFEM approach:** for each new \(\mu\),
 - compute the MsFEM basis functions:
 \[(\star) \quad -\text{div}\left[A_\varepsilon(\mu, x) \nabla \phi_i(\mu, x)\right] = 0 \text{ in } K, \quad \phi_i(\mu, \cdot) = \phi_i^0 \text{ on } \partial K\]
 - solve the global problem on \(\text{Span}\{\phi_i(\mu, \cdot), 1 \leq i \leq I\}\).
 Too expensive!

- **Our approach:** model reduction (PGD approach) on \((\star)\):
 \[
 \phi_i(\mu, x) \approx \phi_i^0(x) + \sum_{j=1}^{J} \psi_j(x) \alpha_j(\mu)
 \]
 for (hopefully) a small number \(J\) of terms. The decomposition is built iteratively (greedy algorithm).
Proper Generalized Decomposition (Ladevèze, Chinesta, Nouy, . . .)

Idea to compute \(w(x, \mu) \):

- represent the solution as a linear combination of tensor products of small-dimensional functions:

\[
w(x, \mu) = \sum_{j \geq 1} \psi_j(x) \alpha_j(\mu)
\]

- look iteratively for the best tensor product: once some approximation

\[
w_{n-1}(x, \mu) = \sum_{j=1}^{n-1} \psi_j(x) \alpha_j(\mu)
\]

has been computed, improve it by considering

\[
w_n(x, \mu) = w_{n-1}(x, \mu) + \psi_n(x) \alpha_n(\mu)
\]
For a given parameter μ_0, perform a MsFEM computation and adapt the discretization parameters (H, h and oversampling). This discretization will be kept unchanged.
For a given parameter μ_0, perform a MsFEM computation and adapt the discretization parameters (H, h and oversampling). This discretization will be kept unchanged.

Perform a PGD approach on $\phi^\varepsilon_i(\mu, \cdot)$, solution to

$$-\text{div}[A_\varepsilon(\mu, x) \nabla \phi^\varepsilon_i(\mu, x)] = 0 \text{ in } K, \quad \phi^\varepsilon_i(\mu, \cdot) = \phi^0_i \text{ on } \partial K$$

It amounts to writing

$$\phi^\varepsilon_i(\mu, x) \approx \phi^\varepsilon_{i,J}(\mu, x) = \phi^0_i(x) + \sum_{j=1}^{J} \psi^\varepsilon_j(x) \alpha_j(\mu)$$
PGD within MsFEM

- For a given parameter μ_0, perform a MsFEM computation and adapt the discretization parameters (H, h and oversampling). This discretization will be kept unchanged.

- Perform a PGD approach on $\phi^\varepsilon_i(\mu, \cdot)$, solution to

 $$-\text{div}\left[A^\varepsilon(\mu, x)\nabla \phi^\varepsilon_i(\mu, x)\right] = 0 \text{ in } K, \quad \phi^\varepsilon_i(\mu, \cdot) = \phi^0_i \text{ on } \partial K$$

 It amounts to writing

 $$(\star) \quad \phi^\varepsilon_i(\mu, x) \approx \phi^\varepsilon_i,^J(\mu, x) = \phi^0_i(x) + \sum_{j=1}^J \psi^\varepsilon_j(x)\alpha_j(\mu)$$

- For each new μ:
 - evaluate the basis functions $\phi^\varepsilon_i,^J(\mu, x)$ using (\star)
 - solve the global problem on $\text{Span} \left\{ \phi^\varepsilon_i,^J(\mu, \cdot), \ 1 \leq i \leq I \right\}$.
 - estimate the error

Alternative strategy: PGD on global problem followed by MsFEM discretization.
Numerical results (crude discretization)

\(\mu = 1 \) (initial permeability field) \hspace{1cm} \(\mu = 0.1 \) (central channel removed)

MsFEM solution (no oversampling):
PGD approach for the computation of $\phi_i^\varepsilon(\mu, \cdot)$

PGD modes $\psi_j^\varepsilon(x)$ (top) and $\alpha_j(\mu)$ (bottom), $j = 1, \ldots, 5$:

MsFEM basis functions $\phi_i^0(x) + \sum_{j=1}^{J} \psi_j^\varepsilon(x)\alpha_j(\mu)$ ($\mu = 1, 0.5$ and 0.1):
Error estimation (identical MsFEM discretization for any μ)

The error remains under 5% for all μ.

Frédéric Legoll (ENPC/INRIA)
https://www.rocq.inria.fr/matherials/

Support from ONR and EOARD is gratefully acknowledged.