DE LA RECHERCHE À L'INDUSTRIE

IMAGERIE GÉNÉTIQUE: DÉFIS COMPUTATIONNELS ET IMPLÉMENTATION GROS **GRAINS SUR CLUSTER**

Forum TERATEC | Vincent Frouin

Déluge de données

S Laguitton (CATI-CEA)

B daMota (INRIA-CEA)

www.cea.fr

28 JUIN 2012

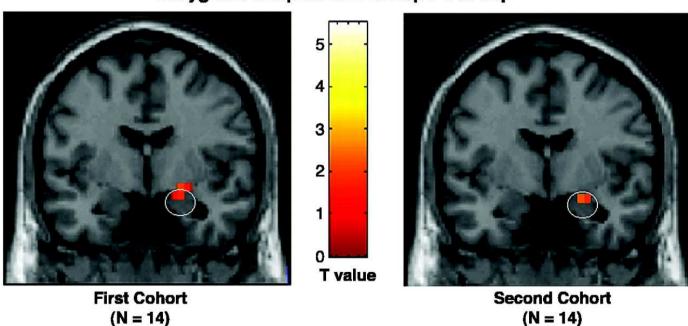


NEUROIMAGERIE-GÉNÉTIQUE: MOTIVATIONS

Etude de groupe, basée sur le génotype

- L'étude inclut ~30 sujets
- 2 groupes : 5-HTT muté vs 5-HTT
- Activité plus grande dans l'amygdale à droite (structure impliquée dans le comportement lié à la peur),

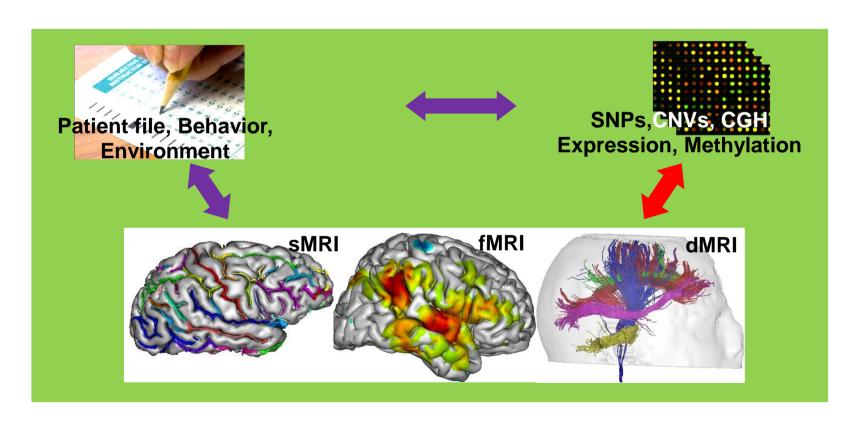
Amygdala Response: s Group > I Group



A R Hariri et al. Science 2002;297:400-403

NEUROIMAGERIE-GÉNÉTIQUE: MOTIVATIONS (2)

- Un outil pour trouver de nouveaux biomarqueurs (via l'endo-phénotype d'imagerie)
- Un outil pour étudier des questions de recherche appliquée ou fondamentale
 - Integration des mesures obtenues à des échelles différentes
 - Révelateur des réseaux moléculaires ou fonctionnels à l'oeuvre



SOMMAIRE

Neuroimagerie Génétique

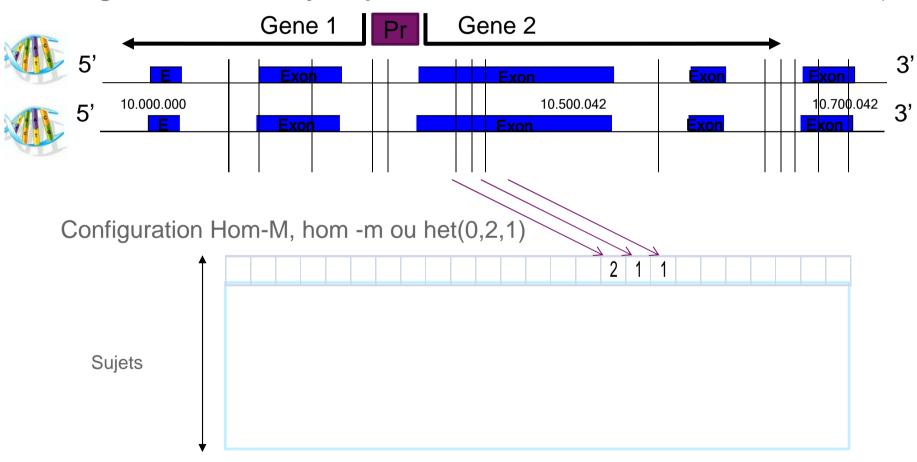
- Le contexte, les mesures,
- L'integration des données produites par des outils de neuroimagerie et de génomique matures.

Implémentation "gros-grain" du modèle de dosage allélique

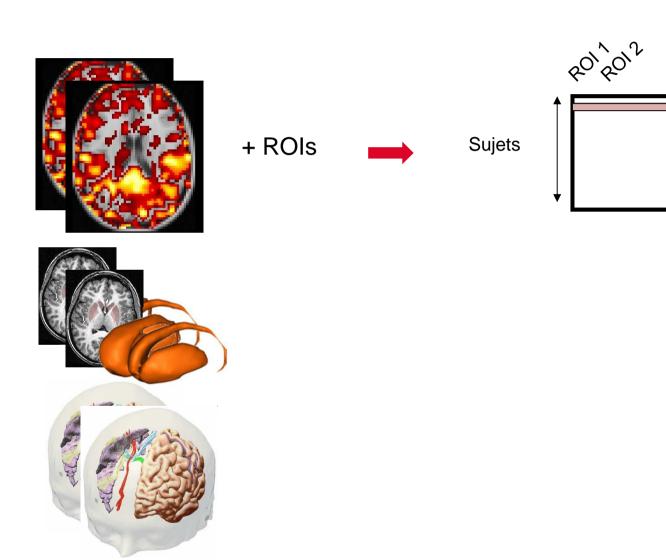
- Besoins de run multiples d'un code données (permutation, validation-croisée)
- MapReduce pattern, Soma-Workflow
- Cluster avec 240 cores

NEUROIMAGERIE-GÉNÉTIQUE : SNP/GENOTYPE

Single Nucleotide Polymorphism : 90% de la variabilité de l'ADN ~10M loci)

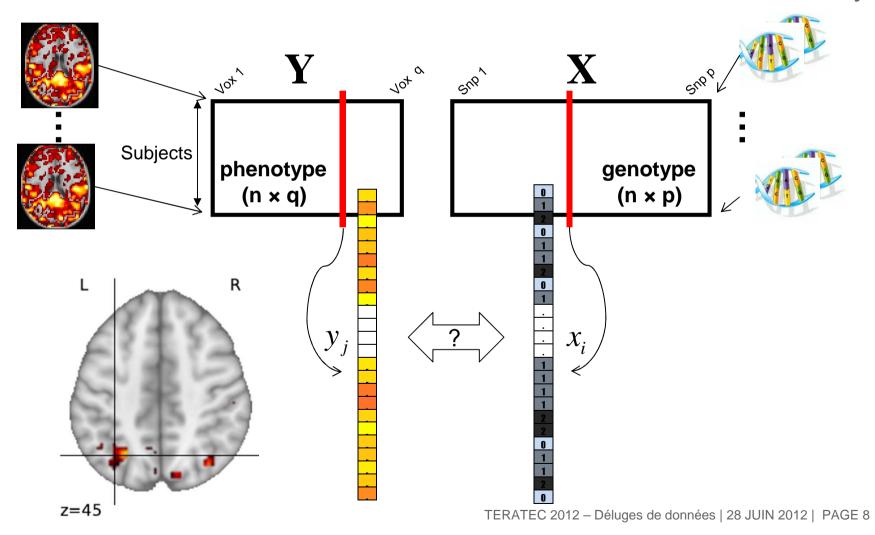


NEUROIMAGERIE-GÉNÉTIQUE: PHENOTYPE



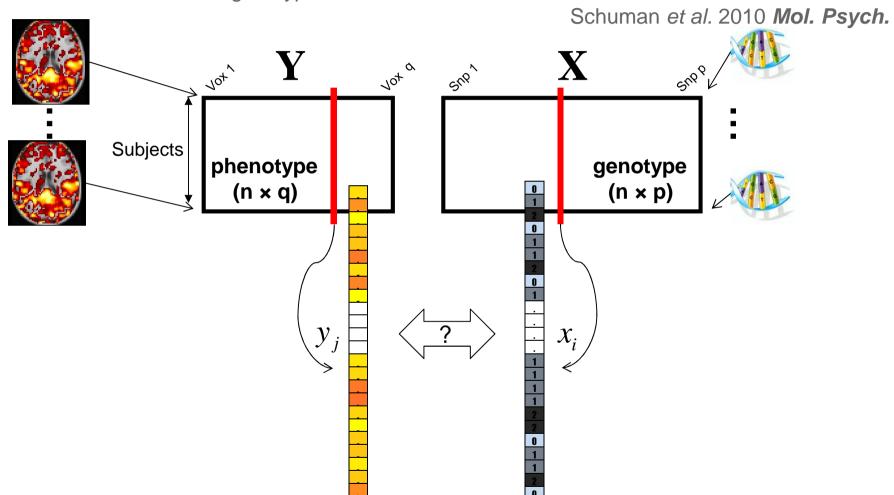
- 2000 sujets normaux, acquisition fMRI et tâche « Impulsivité »,
 - genotype 1 M SNPs

Schuman et al. 2010 Mol. Psych.



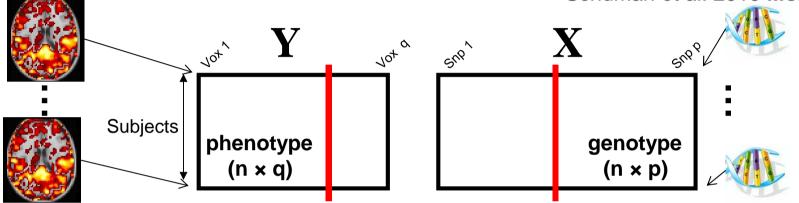
MODÈLE LINÉAIRE MASSIVEMENT UNIVARIÉ

- 2000 sujets normaux, acquisition fMRI et tâche « Impulsivité »,
- genotype 1 M SNPs



- 2000 sujets normaux, acquisition fMRI et tâche « Impulsivité »,
- genotype 1 M SNPs

Schuman et al. 2010 Mol. Psych.



Modèle de dosage allèlique :

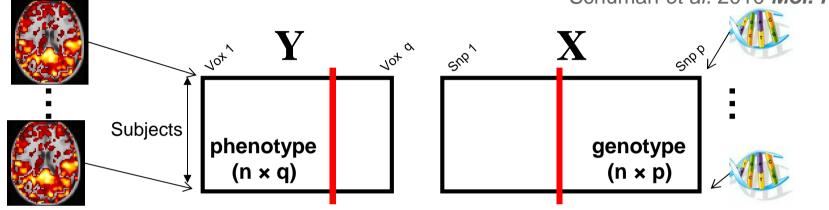
Ajuster un modèle pour chaque (SNP, voxel) Cartographier la statistique (eg. *F-score*)

$$y_j = \beta_{jk} x_k + \epsilon$$

$$j = 1, \dots, q \qquad k = 1, \dots, p$$

- 2000 sujets normaux, acquisition fMRI et tâche « Impulsivité »,
- genotype 1 M SNPs

Schuman et al. 2010 Mol. Psych.



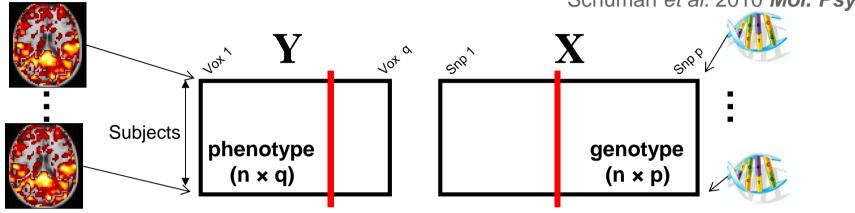
Modèle de dosage allèlique :

Ajuster un modèle pour chaque (SNP, voxel) Cartographier la statistique (eg. *F-score*)

$$X^T Y \rightarrow extit{F-score pour chaque association}$$

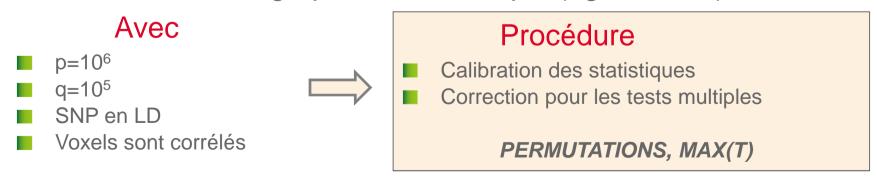
- 2000 sujets normaux, acquisition fMRI et tâche « Impulsivité »,
- genotype 1 M SNPs

Schuman et al. 2010 Mol. Psych.

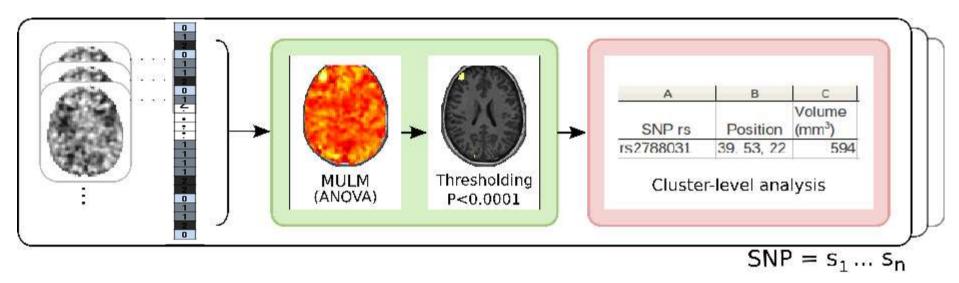


Modèle de dosage allèlique :

Ajuster un modèle pour chaque (SNP, voxel) Cartographier la statistique (eg. *F-score*)



Cluster-based Analysis



Algorithme complet:

- BOUCLE: Données « observées » et « (sujet)-permutées »
 - ■BOUCLE : Pour chaque SNP
 - Calculer la carte statistique
 - Seuiller la carte et enregistrer les clusters
- De la distribution empirique sous H0, déterminer les clusters significatifs

MULM
CLUSTER -BASED ANALYSIS:

MAP-REDUCE PATTERN ET SOMA-WORKFLOW

ACCÉLÉRATION PAR LA PARALLÉLISATION

Données: 2000 subj., ~50k voxels MRI, ~500K SNP

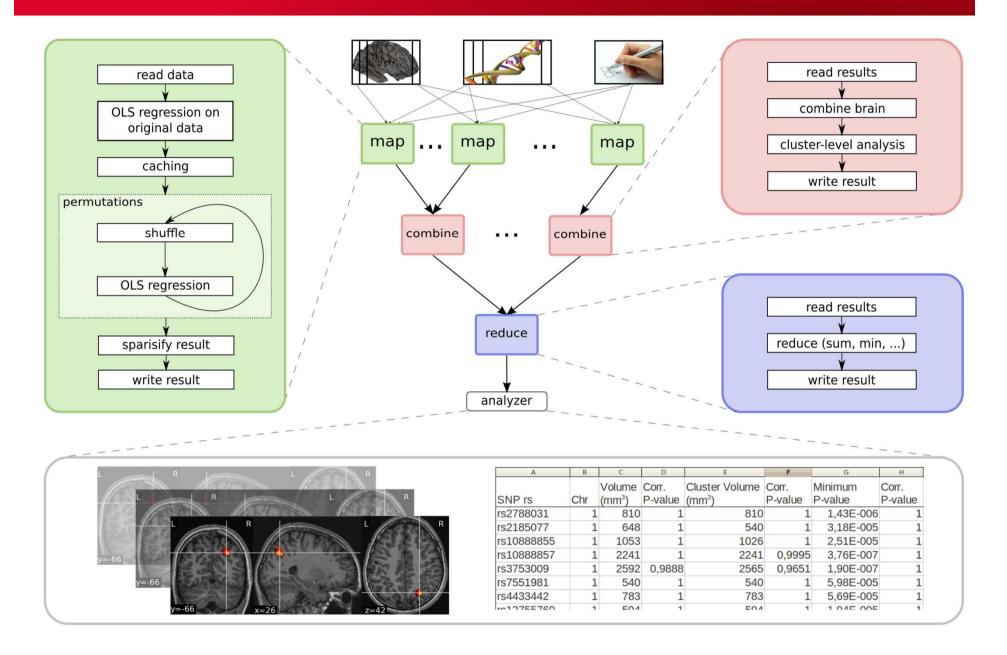
Unité: 1 GWAS : dosage allélique 500k SNP vs 1 phenotype

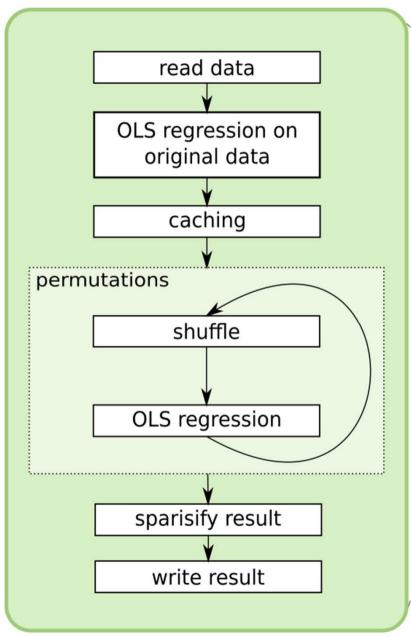
- Code de référence PLINK séquentiel sur un core : 0.5 GWAS/s/c
 - 50k voxels, 1k perm: 4,7 années
 - : 400 Tb de données à partager.
- L'accélération peut être obtenue par
 - le profilage du code unitaire
 - la distribution du code sur les nœuds d'un cluster
 - par l'optimisation-parallélisation conjointe

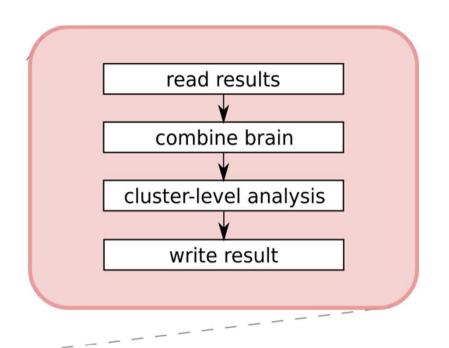
PARALLÉLISATION

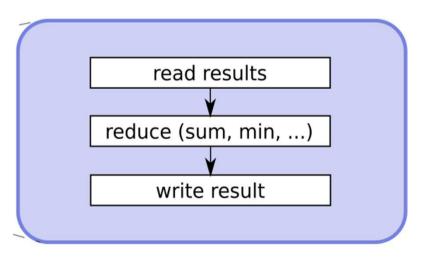
- Repenser l'algorithme pour minimiser les E/S :
 - Optimiser le remplissage de la mémoire cache du processeur
 - Ne charger que les données utiles
- Approche « gros grain » est facilitée car le problème est naturellement parallèle en :
 - SNP, Voxels
 - Permutations
- Utilisation d'un code facile à lire et compatible avec différentes architectures.

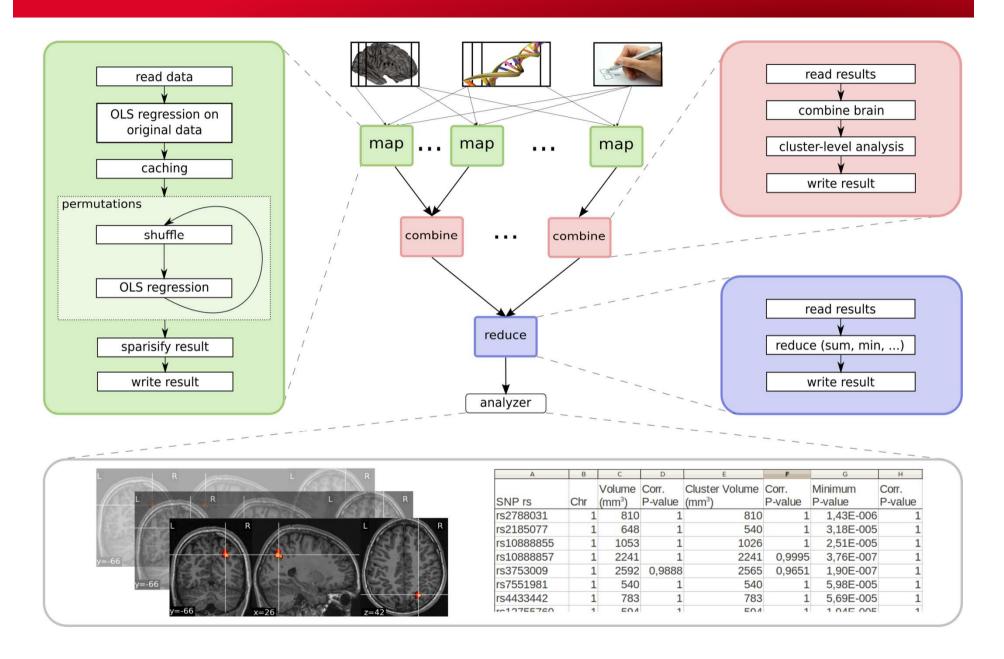
Implémentation Python



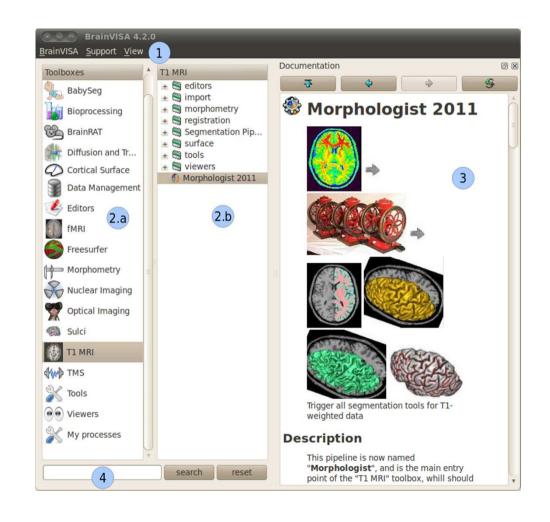


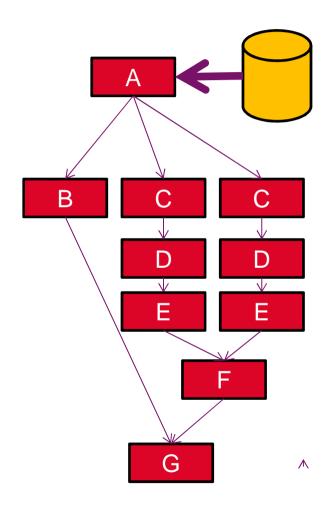






SOMA-WORKFLOW

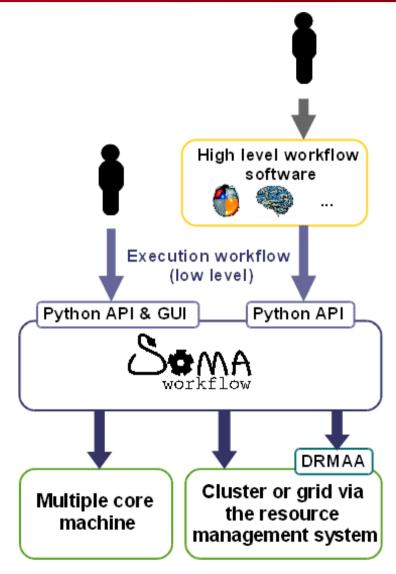




SOMA-WORKFLOW (2)

Permet de décrire un ensemble tâches indépendantes qui vont s'exécuter suivant le graphe

Permet de contrôler l'exécution du graphe en soumettant des jobs à un système de file d'attente classique sur un cluster de calcul.



PERFORMANCES

Données: 2000 subj., ~50k voxels MRI, ~500K SNP

Unité: 1 GWAS : dosage allèlique 500k SNP vs 1 phénotype

- Code de référence PLINK séquentiel sur un core : 0.5 GWAS/s/c
 - 50k voxels, 1k perm: 4,7 années
- LONI cluster: 300 nodes → (2400 @2.4GHz cores) ? (Stein et al. Neuroimage'10)
 - Code Natif Plink comme code unitaire
 - Implémentation Naïve parallèle de PLINK code
 - __ 0.002 GWAS/s/c
- DSVcluster: 20 nodes → 240 cores @2.6GHz (B daMota et al. Compstat'12)
 - Notre implémentation optimisée (corrélation, cache size)
 - Map-reduce pattern et soma-workflow
 - __ 12.0 GWAS/s/c

BESOINS RÉCURRENTS CONCEPTS RÉUTILISABLES

Besoins : définitivement la parallélisation à "gros grain"

- Codes pour étudier la variabilité (ex GWAS 1 phénotype vs full génotype) par des approches statistiques classiques ou apprentissage automatique
 - **CHARGE**: PERMUTATIONS CROSS VALIDATION, BOOTSTRAP
- Codes pour le traitement d'image dédié à l'analyse d'un sujet (efficace, débuggé)
 - CHARGE: BOUCLE SUR LES IMAGES de la DB

Concepts

- Map Reduce pattern
 - Efficient pour un problème « embarrassingly parallel » comme les GW-BW association analysis
 - Plusieurs environnements supportent ce pattern : Hadoop /Apache, SomaWorkflow
- Optimisation/Parallélisation conjointe en neuroimagerie-génétique:
 - Permutations (ou CV) gagnent à être intégrées dans le code unitaire

DEVELOPEMENTS FUTURS

Evolutions Soma-workflow

- Adapter Soma-Workflow à des clusters opérés classiquement :
 - En utilisant openMP

Optimisation

- Nouvelles implémentations du mapper (Brainomics : NeuroSpin and AS+)
 - Nœuds avec des cartes GPU

BIBLIOGRAPHIE

- A R Hariri et al. Serotonin transporter genetic variation and the response of the human amygdala. Science 2002;297:400-403
- Stein et al 2010. Voxelwise genome-wide association study (vGWAS) Neuroimage, 53 (2010), pp. 1160–1174
- daMota et al 2012. A fast computational framework for genome-wide association studies with neuroimaging data. COMPSTAT conference, Limassol, Cyprus.

S. Laguitton
E. Duchesnay
JB. Poline
JF. Mangin

Collaboration:

M Cadennes V Ducrot S Monot

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 79 74 | F. +33 (0)1 DSV I2BM NeuroSpin

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019