

European pole of competence in high performance simulation

Exascale challenges [LABS^{hp}]

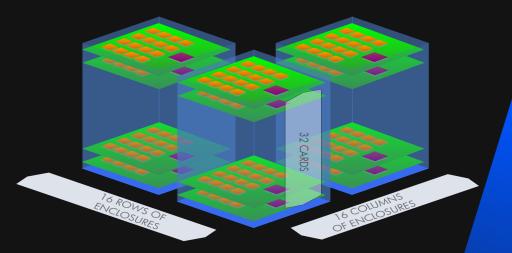
June 27,28 2012 Ecole Polytechnique Palaiseau France patrick.demichel@hp.com

HP Labs around the world

St. Petersburg

Beijing Tokyo

Palo Alto


7 locations

600 researchers in 23 newly formed labs 5 research themes with 20-30 projects at a time Exascale Computing laboratory directed by Norm Jouppi

Bristol

Vision

- -Vision
- Photonics
- System
- -Q&A

INTELLIGENT INFRASTRUCTURE

END STATE: Capture more value via dramatic computing performance and cost improvements

HP LABS' RESEARCH CONTRIBUTION: Radical, new approaches for collecting, storing and transmitting data to feed the exascale data center

BIG BETS:

NEXT-GENERATION DATA CENTERS Exascale, photonic interconnects

NON-VOLATILE MEMORY AND STORAGE Memristor

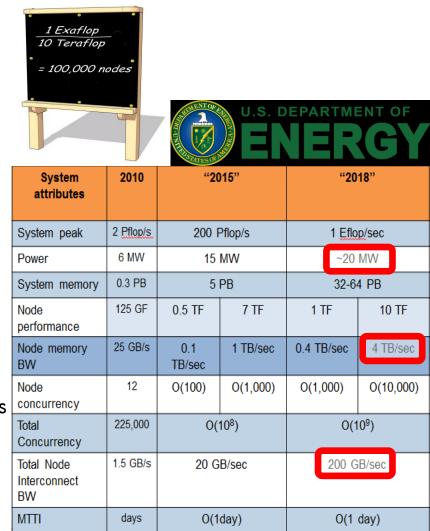
©2009 HP Confidentia

NETWORKING Open, flexible, programmable wired and wireless platform

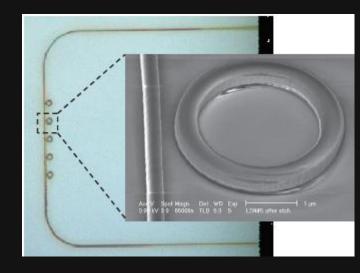
CeNSE Nano-scale sensors creating a Central Nervous System for the Earth

NEXT-GENERATION SCALABLE STORAGE Cloud-scale, dynamic, secure

rtsafer 1fozDrig entra-recovercation did boolean SbRese Irn deleteredisterAssistance(in) terAssistanceBO-STH eqisterAssistanceBD->d 10.0 = new Structu tance(SnIdBenefit, SnSu Benefit, Sn5ubsid ercentage


Vision for Exascale Improve Performance/TCO by 10X

- Efficiency:


- Interconnects using photons
 - 5x (short term: 5years) optical links between nodes
 - 10x (long term) with nanophotonics (+10x bandwidth)
- Nodes with 256 cores : 10TFlops/200Watts
- Memory hierarchy extended with memristors
- Manage: 1 operator for 100K nodes
- Autodetec and autorepair failures:
 - Check-point Restart integrated and transparent

4 research axes as priorities:

- Optical interconnects: Scalability up to 1M nodes
- Basic blocks for compute: Corona project
- System software: 1 operator for 100K nodes
- Programmability: Reliability, efficiency

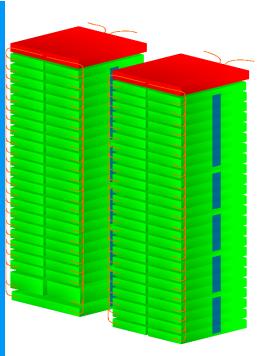
Photonics

Vision
Photonics
System
Q&A

Optical Interconnect at All Scales

The Optically Interconnected Datacenter

Networking


Research Challenges

- High radix switches
- Optical fabrics
- High radix routers
- Connectors, engines, media

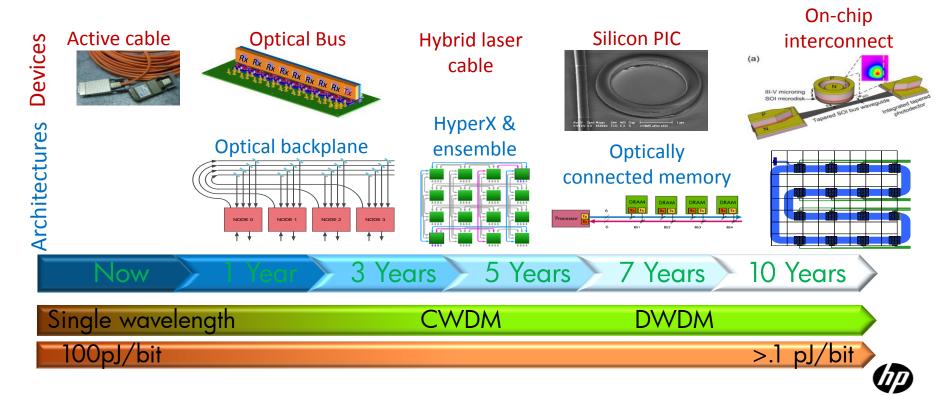
Opportunities

 Uniform bandwidth and latency → high flexibility, new programming models

• Lower TCO through power saving, ease of installation, flexibility

Memory/CPU Interconnect

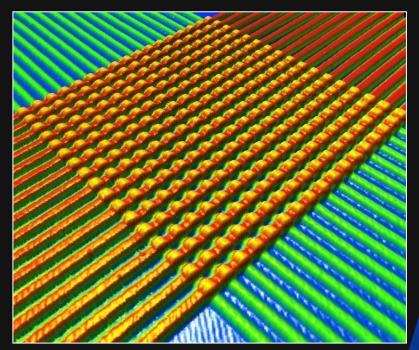
Research Challenges


Low cost optical bus structures
New memory architectures
Large Scale Integrated
Nanophotonics
Opportunities
New architectures
Flexibility, re-configurability

Metrics

Discrete optics •5x higher BW density •5x lower power Integrated photonics •20x higher BW/pin •5x further power reduction

HP photonics technologies



Benefits of photonics:

- Integrated photonics has the potential to:
- Dramatically improve memory bandwidth
- Significantly improve many-core performance
- Reduce power
- Simplify programming
- All at the same time!
- •Near term applications such as optical buses
- Add significant system flexibility
- Save latency and power
- •Longer term give opportunity to rethink system architecture
- New architectures & flexibility (e.g., optical buses)
- Disaggregation and dematerialization enablement

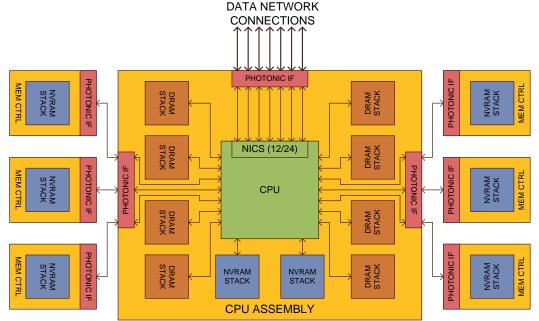
Vision
Photonics
System
Q&A

Critical Component Technologies - NVRAM

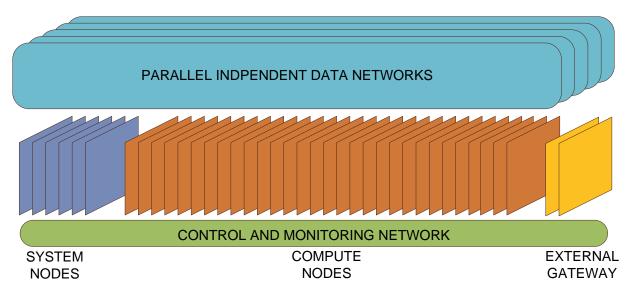
 Essential to provide adequate IO bandwidth

- Addresses shortfall in DRAM scaling

- Greatly superior power proportionality

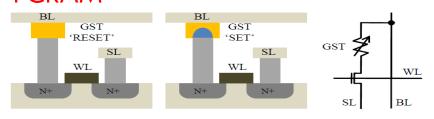

HP LABS

- Rotating media still the lowest cost per bit

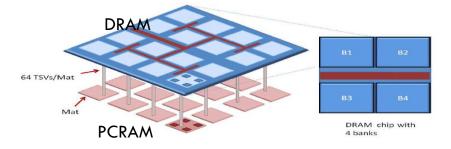

A Strawman Exascale System

What's on a node

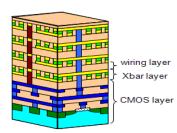
- Single chip, highly parallel CPU
- Stacked or on-substrate "near" memory
- DRAM or NVRAM "far" memory
- Integrated network interface
- Multiple photonic links for off-node communications


A Strawman Exascale System

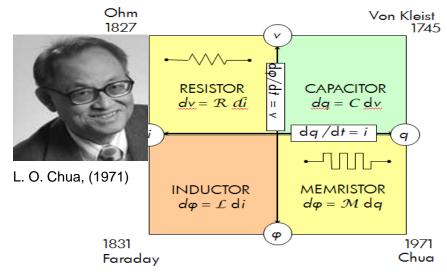
- 100,000, 10Tflop compute nodes (or 1,000,000 1Tflop processors)
- 32 to 64Petabytes of DRAM
- NVRAM capacity of at least 4x DRAM
- 40Petabyte/s network

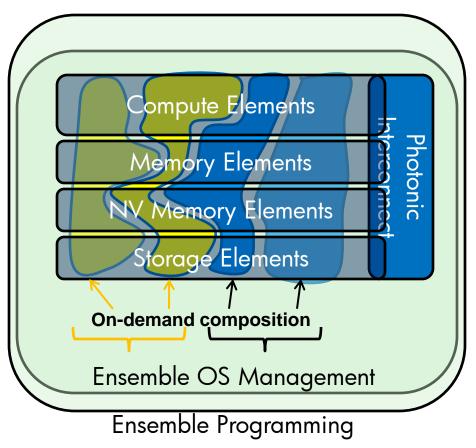

Technologies for Check-point Restart www.nd.edu/~rich/SC09/tut157/SC2009_Jouppi_Xie_Tutorial_Final.pdf

www.nd.edu/~rich/SC09/tut157/SC2009_Jouppi_Xie_Tutorial_Final.pdf PCRAM Memristor



The schematic view of a PCRAM cell with NMOS access transistor (BL=Bitline, WL=Wordline, SL=Sourceline)


	HDD	NAND Flash	PCRAM
Taille cellule	•	4-6F^2	4-6F^2
Cycle lecture	~4ms	5us-50us	10ns-100ns
Cycle écriture	~4ms	2ms-3ms	100-1000ns
Watt à arrêt	~1W	~0W	~0W
Endurance cycles	10^15	10^5	10^8

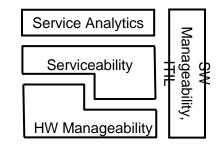

CMOS chip avec des composants memrésistifs

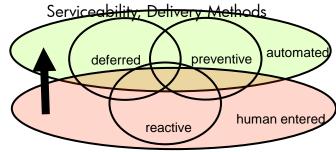
Architecture evolution

- "Computing Ensemble": bigger than a server, smaller than a datacenter, built-in system software
- Disaggregated pools of uncommitted compute, memory, and storage elements
- Optical interconnects enable dynamic, on-demand composition
- Ensemble OS software using virtualization for composition and management
- Management and programming virtual appliances add value for IT and application developers

EXASCALE SYSTEM SUPPORT

- Trends


- From hardware break-fix to higher levels (software, services)
- Significant integration between serviceability & manageability
- Level of automation is critical, move to lower cost deliveries
- Self-healing at lower levels (function of cost)
- Failures in infrastructure transparent to the service customer


- Challenges

- e2e automation, noise in data, no faults found
- Knowledge hard to search, store, share, use
- Back-end analysis (forecast, trend), global knowledge, closed loops

- Opportunities

- Clean data: resulting from e2e unified serviceability and self-healing
- Actionable knowledge: transparently captured, enabled by clean data
- Backend analysis: simplified by clean data and actionable knowledge

Questions?

