Quantum Monte Carlo The QMC=Chem code

Quantum Monte Carlo simulations in chemistry at the petascale level and beyond

A. Scemama¹, M. Caffarel¹, E. Oseret², W. Jalby²

¹Laboratoire de Chimie et Physique Quantiques / IRSAMC, Toulouse, France ²Exascale Computing Research / Intel, CEA, GENCI, UVSQ Versailles, France

28 June 2012

A. Scemama, M. Caffarel, E. Oseret, W. Jalby QMC simulations in chemistry

• Solve the Schrödinger equation with random walks

- State-of-the-art and routine approaches in physics : nuclear physics, condensed-matter, spin systems, quantum liquids, infrared spectroscopy . . .
- Still of confidential use for the electronic structure problem of quantum chemistry (as opposed to post-HF and DFT)
- Reason : Very high computational cost for small/medium systems

- Very favorable scaling with system size compared to standard methods
- Ideally suited to extreme parallelism

- Solve the Schrödinger equation with random walks
- State-of-the-art and routine approaches in physics : nuclear physics, condensed-matter, spin systems, quantum liquids, infrared spectroscopy . . .
- Still of confidential use for the electronic structure problem of quantum chemistry (as opposed to post-HF and DFT)
- Reason : Very high computational cost for small/medium systems

- Very favorable scaling with system size compared to standard methods
- Ideally suited to extreme parallelism

- Solve the Schrödinger equation with random walks
- State-of-the-art and routine approaches in physics : nuclear physics, condensed-matter, spin systems, quantum liquids, infrared spectroscopy . . .
- Still of confidential use for the electronic structure problem of quantum chemistry (as opposed to post-HF and DFT)
- Reason : Very high computational cost for small/medium systems

- Very favorable scaling with system size compared to standard methods
- Ideally suited to extreme parallelism

- Solve the Schrödinger equation with random walks
- State-of-the-art and routine approaches in physics : nuclear physics, condensed-matter, spin systems, quantum liquids, infrared spectroscopy ...
- Still of confidential use for the electronic structure problem of quantum chemistry (as opposed to post-HF and DFT)
- Reason : Very high computational cost for small/medium systems

- Very favorable scaling with system size compared to standard methods
- Ideally suited to extreme parallelism

- Solve the Schrödinger equation with random walks
- State-of-the-art and routine approaches in physics : nuclear physics, condensed-matter, spin systems, quantum liquids, infrared spectroscopy ...
- Still of confidential use for the electronic structure problem of quantum chemistry (as opposed to post-HF and DFT)
- Reason : Very high computational cost for small/medium systems

- Very favorable scaling with system size compared to standard methods
- Ideally suited to extreme parallelism

Quantum Monte Carlo for molecular systems

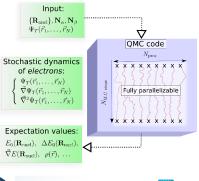
Problem : Solve stochastically the Schrödinger equation for *N* electrons in a molecule

$$E = \frac{\int d\mathbf{r}_1 \dots d\mathbf{r}_N \Phi(\mathbf{r}_1, \dots, \mathbf{r}_N) \mathcal{H} \Phi(\mathbf{r}_1, \dots, \mathbf{r}_N)}{\int d\mathbf{r}_1 \dots d\mathbf{r}_N \Phi(\mathbf{r}_1, \dots, \mathbf{r}_N) \Phi(\mathbf{r}_1, \dots, \mathbf{r}_N)}$$

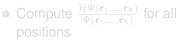
~
$$\sum \frac{\mathcal{H} \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N)}{\Psi(\mathbf{r}_1, \dots, \mathbf{r}_N)}, \text{ sampled with } (\Psi \times \Phi)$$

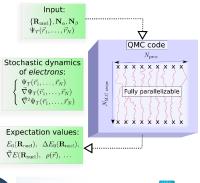
 \mathcal{H} : Hamiltonian operator $\mathbf{r}_1, \dots, \mathbf{r}_N$: Electron coordinates Φ : Exact wave function

E: Energy


- Ψ : Trial wave function

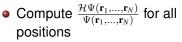
A. Scemama, M. Caffarel, E. Oseret, W. Jalby

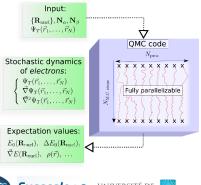

- Walker : vector of $\mathbb{R}^{3\mathcal{N}}$ containing the electron positions
- Drifted diffusion of walkers with birth/death process to generate the 3N-density (Ψ × Φ) (needs Ψ, ∇Ψ, ΔΨ)
- Compute $\frac{\mathcal{H}\Psi(\mathbf{r}_1,...,\mathbf{r}_N)}{\Psi(\mathbf{r}_1,...,\mathbf{r}_N)}$ for all positions
- Extreme parallelism : Independent populations of walkers can be distributed on different CPUs



A. Scemama, M. Caffarel, E. Oseret, W. Jalby

- Walker : vector of \mathbb{R}^{3N} containing the electron positions
- Drifted diffusion of walkers with birth/death process to generate the 3N-density (Ψ × Φ) (needs Ψ, ∇Ψ, ΔΨ)

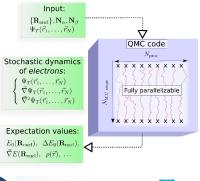

- Extreme parallelism : Independent populations of walkers can be distributed on different CPUs



A. Scemama, M. Caffarel, E. Oseret, W. Jalby

- Walker : vector of \mathbb{R}^{3N} containing the electron positions
- Drifted diffusion of walkers with birth/death process to generate the 3N-density (Ψ × Φ) (needs Ψ, ∇Ψ, ΔΨ)

- Extreme parallelism : Independent populations of walkers can be distributed on different CPUs

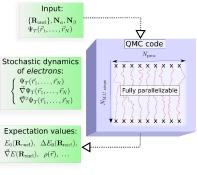


A. Scemama, M. Caffarel, E. Oseret, W. Jalby

- Walker : vector of \mathbb{R}^{3N} containing the electron positions
- Drifted diffusion of walkers with birth/death process to generate the 3N-density (Ψ × Φ) (needs Ψ, ∇Ψ, ΔΨ)

• Compute
$$\frac{\mathcal{H}\Psi(\mathbf{r}_1,...,\mathbf{r}_N)}{\Psi(\mathbf{r}_1,...,\mathbf{r}_N)}$$
 for all positions

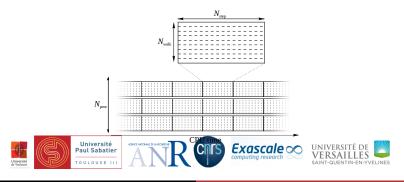
- The energy is the average of all computed ^{HΨ(**r**₁,...,**r**_N)}
 _Ψ(**r**₁,...,**r**_N)
 _Ψ(**r**₁,...,**r**_N)
- Extreme parallelism : Independent populations of walkers can be distributed on different CPUs



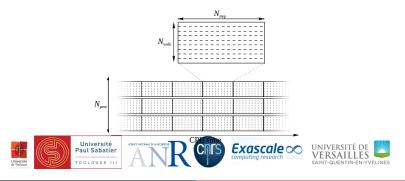
A. Scemama, M. Caffarel, E. Oseret, W. Jalby

- Walker : vector of \mathbb{R}^{3N} containing the electron positions
- Drifted diffusion of walkers with birth/death process to generate the 3N-density (Ψ × Φ) (needs Ψ, ∇Ψ, ΔΨ)

• Compute
$$\frac{\mathcal{H}\Psi(\mathbf{r}_1,...,\mathbf{r}_N)}{\Psi(\mathbf{r}_1,...,\mathbf{r}_N)}$$
 for all positions

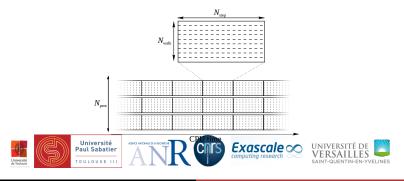

- The energy is the average of all computed ^{HΨ(**r**₁,...,**r**_N)}
 _Ψ(**r**₁,...,**r**_N)
 _Ψ(**r**₁,...,**r**_N)
- Extreme parallelism : Independent populations of walkers can be distributed on different CPUs

Implementation in QMC=Chem


- Block : N_{walk} walkers executing N_{step} steps
- Compute as many blocks as possible, as quickly as possible
- Block averages have a Gaussian distribution

A. Scemama, M. Caffarel, E. Oseret, W. Jalby

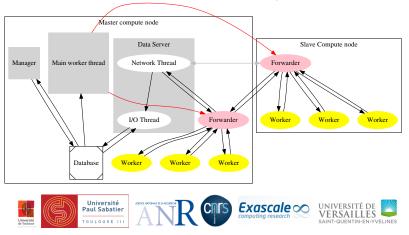
Implementation in QMC=Chem


- Block : N_{walk} walkers executing N_{step} steps
- Compute as many blocks as possible, as quickly as possible
- Block averages have a Gaussian distribution

A. Scemama, M. Caffarel, E. Oseret, W. Jalby

Implementation in QMC=Chem

- Block : N_{walk} walkers executing N_{step} steps
- Compute as many blocks as possible, as quickly as possible
- Block averages have a Gaussian distribution

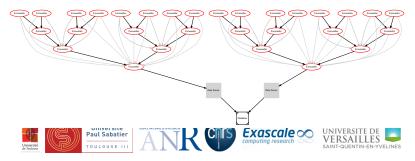


A. Scemama, M. Caffarel, E. Oseret, W. Jalby

Quantum Monte Carlo The QMC=Chem code

Parallelism in QMC=Chem

All I/O and network communications are asynchronous

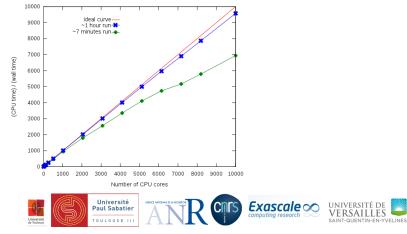


A. Scemama, M. Caffarel, E. Oseret, W. Jalby

Fault-tolerance

Extreme parallelism \longrightarrow possible system failures

- $\bullet~$ Blocks are Gaussian \rightarrow losing blocks doesn't change the average
- Simulation survives to removal of any node
- Restart always possible from data base



A. Scemama, M. Caffarel, E. Oseret, W. Jalby QMC simulations in chemistry

Quantum Monte Carlo The QMC=Chem code

QMC=Chem scaling

Almost ideal scaling \longrightarrow single-core optimization is crucial.

A. Scemama, M. Caffarel, E. Oseret, W. Jalby QMC simulations in chemistry

- Matrix inversion $\mathcal{O}(N^3)$ (DP,Intel MKL)
- Sparse×dense matrix products $O(N^2)$ (SP,our implementation)

Efficiency of the matrix products :

- Static analysis (MAQAO) : Full-AVX (no scalar operations), inner-most loops perform 16 flops/cycle
- Decremental analysis (DECAN) : good balance between flops and memory operations
- Up to 64% of the peak measured on Xeon E5

- Matrix inversion $\mathcal{O}(N^3)$ (DP,Intel MKL)
- Sparse×dense matrix products $O(N^2)$ (SP,our implementation)
- Efficiency of the matrix products :
 - Static analysis (MAQAO) : Full-AVX (no scalar operations), inner-most loops perform 16 flops/cycle
 - Decremental analysis (DECAN) : good balance between flops and memory operations
 - Up to 64% of the peak measured on Xeon E5

- Matrix inversion $\mathcal{O}(N^3)$ (DP,Intel MKL)
- Sparse×dense matrix products $O(N^2)$ (SP,our implementation)
- Efficiency of the matrix products :
 - Static analysis (MAQAO) : Full-AVX (no scalar operations), inner-most loops perform 16 flops/cycle
 - Decremental analysis (DECAN) : good balance between flops and memory operations
 - Up to 64% of the peak measured on Xeon E5

- Matrix inversion $\mathcal{O}(N^3)$ (DP,Intel MKL)
- Sparse×dense matrix products $O(N^2)$ (SP,our implementation)
- Efficiency of the matrix products :
 - Static analysis (MAQAO) : Full-AVX (no scalar operations), inner-most loops perform 16 flops/cycle
 - Decremental analysis (DECAN) : good balance between flops and memory operations
 - Up to 64% of the peak measured on Xeon E5

First step in our scientific project : All-electron calculation of the energy difference between the β -strand and the α -helix conformations of amyloid peptide A β (28-35)

122 atoms, 434 electrons, cc-pVTZ basis set (2960 basis functions)

Scientific results (cc-pVTZ basis set) :

- Standard DFT (B3LYP) : 10.7 kcal/mol
- DFT with empirical corrections (SSB-D) : 35.8 kcal/mol
- All-electron MP2 : 39.3 kcal/mol
- CCSD(T) would require at least 100 million CPU hours
- QMC in < 2 million CPU hours (1 day) : 39.7 \pm 2. kcal/mol
- QMC calculations can be made on these systems → study of the interaction of Copper ions with β-amyloids

- Sustained 960 TFlops/s (Mixed SP/DP) on 76 800 cores of Curie
- $\bullet \sim$ 80% parallel speed-up. (Today, it would be > 95 % : run termination was optimized)

Scientific results (cc-pVTZ basis set) :

- Standard DFT (B3LYP) : 10.7 kcal/mol
- DFT with empirical corrections (SSB-D) : 35.8 kcal/mol
- All-electron MP2 : 39.3 kcal/mol
- CCSD(T) would require at least 100 million CPU hours
- QMC in < 2 million CPU hours (1 day) : 39.7 \pm 2. kcal/mol
- QMC calculations can be made on these systems → study of the interaction of Copper ions with β-amyloids

- Sustained 960 TFlops/s (Mixed SP/DP) on 76 800 cores of Curie
- $\bullet \sim$ 80% parallel speed-up. (Today, it would be > 95 % : run termination was optimized)

Scientific results (cc-pVTZ basis set) :

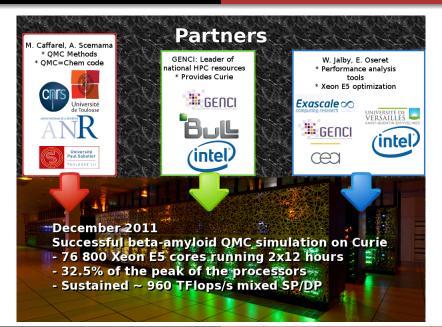
- Standard DFT (B3LYP) : 10.7 kcal/mol
- DFT with empirical corrections (SSB-D) : 35.8 kcal/mol
- All-electron MP2 : 39.3 kcal/mol
- CCSD(T) would require at least 100 million CPU hours
- QMC in < 2 million CPU hours (1 day) : 39.7 \pm 2. kcal/mol
- QMC calculations can be made on these systems \longrightarrow study of the interaction of Copper ions with β -amyloids

- Sustained 960 TFlops/s (Mixed SP/DP) on 76 800 cores of Curie
- $\bullet \sim$ 80% parallel speed-up. (Today, it would be > 95 % : run termination was optimized)

Scientific results (cc-pVTZ basis set) :

- Standard DFT (B3LYP) : 10.7 kcal/mol
- DFT with empirical corrections (SSB-D) : 35.8 kcal/mol
- All-electron MP2 : 39.3 kcal/mol
- CCSD(T) would require at least 100 million CPU hours
- QMC in < 2 million CPU hours (1 day) : 39.7 \pm 2. kcal/mol
- QMC calculations can be made on these systems \longrightarrow study of the interaction of Copper ions with β -amyloids

- Sustained 960 TFlops/s (Mixed SP/DP) on 76 800 cores of Curie
- $\bullet \sim$ 80% parallel speed-up. (Today, it would be > 95 % : run termination was optimized)


Scientific results (cc-pVTZ basis set) :

- Standard DFT (B3LYP) : 10.7 kcal/mol
- DFT with empirical corrections (SSB-D) : 35.8 kcal/mol
- All-electron MP2 : 39.3 kcal/mol
- CCSD(T) would require at least 100 million CPU hours
- QMC in < 2 million CPU hours (1 day) : 39.7 \pm 2. kcal/mol
- QMC calculations can be made on these systems \longrightarrow study of the interaction of Copper ions with β -amyloids

- Sustained 960 TFlops/s (Mixed SP/DP) on 76 800 cores of Curie
- \sim 80% parallel speed-up. (Today, it would be > 95 % : run termination was optimized)

Quantum Monte Carlo The QMC=Chem code

A. Scemama, M. Caffarel, E. Oseret, W. Jalby QMC simulations in chemistry