Scientific Visualization for Decision Support

Michel.Ravachol@dassault-aviation.com
Anastasia.Bezerianos@ecp.fr
Florian.De-Vuyst@ecp.fr
Rim.Djedidi@ecp.fr

“Tell me and I'll forget; show me and I may remember; involve me and I'll understand.”

Chinese proverb
Scientific Visualization for Decision Support: Industrial Vision

Michel.Ravachol@dassault-aviation.com
Decision making loop in design

Evaluate requirements impact

requirements

Decision space

decision

Synthesis to support decision making

• Synthesis of important parameters
 - What are the limits and where are they.
 - Impact of component performances on global performances

• Propose trade-offs
 - Between requirements
 - On design parameters

• Manage risks
 - Quantitative evaluation

Systematic and automatic exploration

• Understand the design space
 - What are the important parameters?
 - How the requirements interact with each other?
 - Where are the most promising solutions?

• Generate models dedicated to decision making
 - Trade-offs
 - Evaluate risks

Forum TER@TEC, 16 juin 2010
Design loop

- Customer requirements
- Technologies
- Levels of fidelity
- Objectives
- Constraints
- Design variables
- Define Problem
- Define Design Space
- Models and Simulation
- Explore Design Space
- Evaluate solutions
- Select solution

Visualization

Forum TER@TEC, 16 juin 2010
Technical challenges:

- Management of a hierarchy of interoperable surrogate models
- Evaluate the robustness of results wrt risks and uncertainties
- Exploration techniques adapted to the different level of fidelity of the models
- Methodology to analyze the design process of complex systems
- Develop interactive visualization tools to support decision making

Inspiration:

Georgia Tech ASDL
Collaborative Visualization Environment
Goal: Interactive design reviews

"Performance" view

"Physical" view

"System" view

Interactive visualization of the impact of the design parameters on
- global performances
- physical solutions
- component behavior
Initial step

Prototype in Matlab

- Identify key functionalities
- Test / evaluate solutions

Mathematical tools
Ergonomy
Visualization techniques

To be consolidated in CSDL

"Static" Analysis

Forum TER@TEC, 16 juin 2010
From static to dynamic

- Use surrogate models

- Surrogate models:
 - Interactive "dynamic" analysis
 - Experimental design
 - Analysis of variance

Forum TER@TEC, 16 juin 2010
Forum TER@TEC, 16 juin 2010
Scientific Visualization for Decision Support: Scientific Research Vision

Anastasia.Bezerianos@ecp.fr
Florian.De-Vuyst@ecp.fr
Rim.Djedidi@ecp.fr
• Visualization: Wish List & Challenges
 Anastasia.Bezerianos@ecp.fr

• Online Analysis and Exploration Process
 Florian.De-Vuyst@ecp.fr

• Data Modeling and Semantics
 Rim.Djedidi@ecp.fr
• Visualization: Wish List & Challenges
 Anastasia.Bezerianos@ecp.fr

• Online Analysis and Exploration Process
 Florian.De-Vuyst@ecp.fr

• Data Modeling and Semantics
 Rim.Djedidi@ecp.fr
CSDL: Visualization Wish List

- Interactive Visualization
- Collaborative exploration
- Exploration History
- Interactive Visualizations (Surrogate Models)
- Interactive Visualizations (Surrogate Models)
 - Interactive result exploration in different views
CSDL: Visualization Challenges

- Interactive Visualizations (Surrogate Models)
 - Interactive result exploration in different views
CSDL: Visualization Challenges

- Interactive Visualizations (Surrogate Models)
 - Interactive result exploration in different views
 - Interactive data re-sampling, define and present
CSDL: Visualization Challenges

- Interactive Visualizations (Surrogate Models)
 - Interactive result exploration in different views
 - Interactive data re-sampling, define and present

Forum TER@TEC, 16 juin 2010
CSDL: Visualization Challenges

- Collaborative exploration
CSDL: Visualization Challenges

- Collaborative exploration
 - What interaction mechanisms to provide
 - How to treat conflicting requests

Forum TER@TEC, 16 juin 2010
CSDL: Visualization Challenges

- Collaborative exploration
 - What interaction mechanisms to provide
 - How to treat conflicting requests

- Distributed settings, additional challenges:
 - How to handle multiple requests and delays
 - How to treat mixed infrastructure
CSDL: Visualization Challenges

- History
- Provenance and Storytelling, Latecomers
CSDL: Visualization Challenges

- History
- Provenance and Storytelling, Latecomers
 - How to go back to previous exploration steps?
 - How to visualize paths that lead to decision?
 - How to summarize current exploration state?
Overview

• Visualization: Wish List & Challenges
 Anastasia.Bezerianos@ecp.fr

• Online Analysis and Exploration Process
 Florian.De-Vuyst@ecp.fr

• Data Modeling and Semantics
 Rim.Djedidi@ecp.fr
Dealing with Highly-Dimensional FE Solutions

\[\theta \in \mathbb{R}^p \rightarrow \text{FE computations} \rightarrow J(\theta) \]

\[u^\theta(x) = u(x, \theta) \]

Discrete: \(U^\theta \in \mathbb{R}^d, \ J^\theta \in \mathbb{R}^q \)

Typically: \(1 \leq p \leq 400, \ 1 \leq q \leq 50 \)
\(10^5 \leq d \leq 10^8 \)
Usual standard approach (commercial software):

- **Design parameters** $\theta \in \mathbb{R}^p$
- **Response $J(\theta)$**

Metamodelling

Response Surface Methodology RSM

$$\tilde{J}(\theta) = \ldots$$

- Scatterplots
- Pareto
- Clustering
- Check into physical space

Forum TER@TEC, 16 juin 2010
Usual Process of Exploration and Analysis

Define parameter space

(Re)-define criteria, cost functions, constraints, …

DOE

RSM

Visualize, explore, analyze, decision process

Check, verify in physical 3D space

CPU TIME CONSUMING!

Big latency

while not satisfied 😞

→ Not suitable for online progressive visualization & analysis

DOE : Design Of Experiment
RSM : Response Surface Methodology

Forum TER@TEC, 16 juin 2010
A Suitable Progressive Online Visualization Process

Define parameter space

(Re)-define criteria, cost functions, constraints, …

Visualize, explore, analyze, decision process

Check/verify in physical 3D space

Done once for all!

Need storage data modeling (FE)

Adaptive non-blocking asynchronous metamodel refinement

while not satisfied 😊

Collaborative online visualization environment

DOE : Design Of Experiment
DB : DataBase
DWH : Data WareHouse
RSM : Response Surface Methodology

Forum TER@TEC, 16 juin 2010
Example of POD-Based FE Reduced-Order Model
(local POD-ISAT ROM - Dung Bui PhD thesis, ECP)

\[\tilde{u}_{(\theta)}(x) = u^{lift}(\theta)(x) + (u^i - u^{lift}(\theta^i))(x) \]

\[+ \sum_{k=1}^{K} a_k(\theta) \Psi_{(\theta)}^k(x) \]

Design space
- Trust region
- DOE sampling points

Local surrogate model at point \(\theta^i \)

Easy-to-compute lifting function (for BC)

Shift

Local POD modes

POD coefficients (need a learning step)

Forum TER@TEC, 16 juin 2010
\[R(\bar{u}^\theta) \leq \varepsilon_{\text{threshold}} \]

Database content:

- The "center" point \(\theta^i \)
- The FE solution \(\bar{u}^i = u(\theta^i) \)
- A local surrogate form \(\bar{u}(\cdot,\theta) \)
- Some POD coeffs \(a_k(\theta) \) computed by minimization of the residual
- A Trust region model \(\tilde{R}(\bar{u}^\theta) \) computed from a SRM of the residual
Integration into the Progressive Collaborative Online Visualization Environment

- Need to “explore” a new design area
- Is there any accurate surrogate?

YES
- Good! Keep going.
- Visualize …

NO
- Oops! Create new local surrogate
- Improves residuals and trust regions accuracy of existing local surrogate models (if necessary)
- Inform user and collaborators
- Alert! Ongoing modeling…

MAIN TASK

PARALLEL THREAD

ONLINE

ENRICH

REFINE

Timeline

On-the-fly!
• Visualization: Wish List & Challenges
 Anastasia.Bezerianos@ecp.fr

• Online Analysis and Exploration Process
 Florian.De-Vuyst@ecp.fr

• Data Modeling and Semantics
 Rim.Djedidi@ecp.fr
Data Modeling Requirements for online visualization process

Experiment
- Define parameter space
- (Re)-define criteria, cost functions, constraints, …
- Need storage data modeling (FE)
- Done once for all!

Exploration & Learning & Decision support
- Visualize, explore, analyze, decision process
- Check/verify in physical 3D space
- Adaptive non-blocking asynchronous metamodel refinement
- while not satisfied 😊

Forum TER@TEC, 16 juin 2010

Definitions
- DOE : Design Of Experiment
- DB : DataBase
- DWH : Data WareHouse
- RSM : Response Surface Methodology
Scientific Data Modeling

Experiment Level

- Raw Data Set
 - Design Parameters
 - FE solutions of DOE Sampling points

Exploration & Learning Level

- Criteria, Cost Functions, Constraints, …
- Surrogate models
 - Example POD Reduced-order model
 - POD Modes, POD coefficients, Trust Region
- Design preferences
- Multiple customizations
2 Systems to coexist!

1. Operational system for data storing
 ➔ Learning Database (DB)

2. Data restore & multidimensional analysis system
 ➔ Data Warehouse (DWH)
Preliminary Architecture

Experiment

Exploration & Learning & Decision support

CSDL environment for Smart Visualization

Process Layer

Interactive Analysis

Data Layer

Data Storing

Data Restore & Multidimensional Analysis

Data Capture & Update

ETL Process

Interoperability Layer

Independent Operational Systems

IS : Information System
ETL : Extracting, Transforming, Loading

Design Instance

Dimension 1
Dimension 2
Dimension 3
Dimension n

Analysis & Reporting Tools → Decisional System

Forum TER@TEC, 16 juin 2010
2 Systems to coexist!

1. Operational system for data storing
 ➔ Learning Database (DB)

2. Data restore & multidimensional analysis system
 ➔ Data Warehouse (DWH)
 • Combining several multidimensional models (data marts)
 – One multidimensional model for each analysis axis
 • Coherent set of dimensions and facts
 – Temporal, spatial or thematic dimensions
 – Facts modeling design instances (criteria & aggregated functions)
Common and shared vocabulary

- Structuring and Integrating data extracted from heterogeneous data sources
 ➔ Interoperability Layer
Preliminary Architecture

Experiment
Exploration & Learning & Decision support

CSDL environment for Smart Visualization

Process Layer
Interactive Analysis

Data Layer

Data Storing

Data Restore & Multidimensional Analysis

Data Capture & Update

IS : Information System
ETL : Extracting, Transforming, Loading

CSDL: Collaborative System for Data and Information Literacy

IS : Information System
ETL : Extracting, Transforming, Loading

Data Warehouse

Dimension 1
Dimension 2
Dimension 3
Dimension n

Design Instance

Analysis & Reporting Tools → Decisional System

Forum TER@TEC, 16 juin 2010
Semantic Referent for Data Integration

Interoperability Layer

Integrating

Structuring

Ontology

Content Description Source 1

Content Description Source n

ETL Process

Information System 1

Local DB Schema

Data

Information System n

Local DB Schema

Data

Forum TER@TEC, 16 juin 2010
Common and shared vocabulary

- Structuring and Integrating data extracted from heterogeneous data sources
- Handling Heterogeneous Models
 - Querying heterogeneous models
 - Model Comparison – Transformation – Integration
 - Model Reuse – Composition
 - Model Annotation and traceability
Conclusion

Michel.Ravachol@dassault-aviation.com
Conclusion

• Major challenges:
 – Intuitive data representation and interaction in collaborative environments
 – Visualization of uncertainties

• Technologies which need further developments:
 – Surrogates models
 – Model management
 – Exploration techniques (e.g. M-O Optimization)
 – MCDM tools